These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38858444)

  • 1. Influence of triangular obstacles on droplet breakup dynamics in microfluidic systems.
    Tazikeh Lemeski A; Seyyedi SM; Hashemi-Tilehnoee M; Naeimi AS
    Sci Rep; 2024 Jun; 14(1):13324. PubMed ID: 38858444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Microdroplet Breakup Regime in Asymmetric T-Junction Microchannels.
    Cheng WL; Sadr R; Dai J; Han A
    Biomed Microdevices; 2018 Aug; 20(3):72. PubMed ID: 30105562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic Valves for Selective on-Chip Droplet Splitting at Multiple Sites.
    Agnihotri SN; Raveshi MR; Bhardwaj R; Neild A
    Langmuir; 2020 Feb; 36(5):1138-1146. PubMed ID: 31968938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of the breakup process of viscous droplets by an external electric field inside a microfluidic device.
    Li Y; Jain M; Ma Y; Nandakumar K
    Soft Matter; 2015 May; 11(19):3884-99. PubMed ID: 25864524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Droplet Breakup in Expansion-contraction Microchannels.
    Zhu P; Kong T; Lei L; Tian X; Kang Z; Wang L
    Sci Rep; 2016 Feb; 6():21527. PubMed ID: 26899018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical Study of Bubble Breakup in Fractal Tree-Shaped Microchannels.
    Zhang C; Zhang X; Li Q; Wu L
    Int J Mol Sci; 2019 Nov; 20(21):. PubMed ID: 31694334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Droplet Breakup Dynamics in Bi-Layer Bifurcating Microchannel.
    Ren Y; Koh KS; Yew M; Chin JK; Chan Y; Yan Y
    Micromachines (Basel); 2018 Jan; 9(2):. PubMed ID: 30393333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new droplet breakup phenomenon in electrokinetic flow through a microchannel constriction.
    Ji X; Zhou T; Deng Y; Shi L; Zhang X; Woo Joo S
    Electrophoresis; 2020 Jun; 41(10-11):758-760. PubMed ID: 31177552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Droplet breakup mechanisms in premix membrane emulsification and related microfluidic channels.
    Nazir A; Vladisavljević GT
    Adv Colloid Interface Sci; 2021 Apr; 290():102393. PubMed ID: 33770649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Secondary Flows, Mixing, and Chemical Reaction Analysis of Droplet-Based Flow inside Serpentine Microchannels with Different Cross Sections.
    Ghazimirsaeed E; Madadelahi M; Dizani M; Shamloo A
    Langmuir; 2021 May; 37(17):5118-5130. PubMed ID: 33877832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical Study of Surfactant Dynamics during Emulsification in a T-Junction Microchannel.
    Riaud A; Zhang H; Wang X; Wang K; Luo G
    Langmuir; 2018 May; 34(17):4980-4990. PubMed ID: 29597349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding droplet breakup in a post-array device with sheath-flow configuration.
    Masui S; Kanno Y; Nisisako T
    Lab Chip; 2023 Nov; 23(23):4959-4966. PubMed ID: 37873662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of droplet breakup in a microfluidic T-shaped junction with a phase-field model.
    De Menech M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 1):031505. PubMed ID: 16605530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference.
    Liu H; Ju Y; Wang N; Xi G; Zhang Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):033306. PubMed ID: 26465585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Splitting of droplet with different sizes inside a symmetric T-junction microchannel using an electric field.
    Fallah K; Fattahi E
    Sci Rep; 2022 Feb; 12(1):3226. PubMed ID: 35217700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Breakup dynamics and dripping-to-jetting transition in a Newtonian/shear-thinning multiphase microsystem.
    Ren Y; Liu Z; Shum HC
    Lab Chip; 2015 Jan; 15(1):121-34. PubMed ID: 25316203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Numerical Investigation on Droplet Bag Breakup Behavior of Polymer Solution.
    Chu G; Qian L; Zhong X; Zhu C; Chen Z
    Polymers (Basel); 2020 Sep; 12(10):. PubMed ID: 32977399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical investigation of obstacle's effect on the performance of proton-exchange membrane fuel cell: studying the shape of obstacles.
    Ebrahimzadeh AA; Khazaee I; Fasihfar A
    Heliyon; 2019 May; 5(5):e01764. PubMed ID: 31193482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cooperative breakups induced by drop-to-drop interactions in one-dimensional flows of drops against micro-obstacles.
    Schmit A; Salkin L; Courbin L; Panizza P
    Soft Matter; 2015 Mar; 11(12):2454-60. PubMed ID: 25668310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deformation and breakup of compound droplets in airflow.
    Xu Z; Zhang Y; Wang T; Che Z
    J Colloid Interface Sci; 2024 Jan; 653(Pt A):517-527. PubMed ID: 37729759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.