BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38858602)

  • 1. K128 ubiquitination constrains RAS activity by expanding its binding interface with GAP proteins.
    Magits W; Steklov M; Jang H; Sewduth RN; Florentin A; Lechat B; Sheryazdanova A; Zhang M; Simicek M; Prag G; Nussinov R; Sablina A
    EMBO J; 2024 Jun; ():. PubMed ID: 38858602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elevated FBXL6 activates both wild-type KRAS and mutant KRAS
    Xiong HJ; Yu HQ; Zhang J; Fang L; Wu D; Lin XT; Xie CM
    Mil Med Res; 2023 Dec; 10(1):68. PubMed ID: 38124228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-specific monoubiquitination activates Ras by impeding GTPase-activating protein function.
    Hobbs GA; Gunawardena HP; Baker R; Campbell SL
    Small GTPases; 2013; 4(3):186-92. PubMed ID: 24030601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A KRAS GTPase K104Q Mutant Retains Downstream Signaling by Offsetting Defects in Regulation.
    Yin G; Kistler S; George SD; Kuhlmann N; Garvey L; Huynh M; Bagni RK; Lammers M; Der CJ; Campbell SL
    J Biol Chem; 2017 Mar; 292(11):4446-4456. PubMed ID: 28154176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RAS ubiquitylation modulates effector interactions.
    Thurman R; Siraliev-Perez E; Campbell SL
    Small GTPases; 2020 May; 11(3):180-185. PubMed ID: 29185849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Divergent Mechanisms Activating RAS and Small GTPases Through Post-translational Modification.
    Osaka N; Hirota Y; Ito D; Ikeda Y; Kamata R; Fujii Y; Chirasani VR; Campbell SL; Takeuchi K; Senda T; Sasaki AT
    Front Mol Biosci; 2021; 8():707439. PubMed ID: 34307463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential regulation of cellular activities by GTPase-activating protein and NF1.
    al-Alawi N; Xu G; White R; Clark R; McCormick F; Feramisco JR
    Mol Cell Biol; 1993 Apr; 13(4):2497-503. PubMed ID: 8455625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Farnesyltransferase inhibitors block the neurofibromatosis type I (NF1) malignant phenotype.
    Yan N; Ricca C; Fletcher J; Glover T; Seizinger BR; Manne V
    Cancer Res; 1995 Aug; 55(16):3569-75. PubMed ID: 7627966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GAP positions catalytic H-Ras residue Q61 for GTP hydrolysis in molecular dynamics simulations, complicating chemical rescue of Ras deactivation.
    Patel LA; Waybright TJ; Stephen AG; Neale C
    Comput Biol Chem; 2023 Jun; 104():107835. PubMed ID: 36893567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ubiquitination of K-Ras enhances activation and facilitates binding to select downstream effectors.
    Sasaki AT; Carracedo A; Locasale JW; Anastasiou D; Takeuchi K; Kahoud ER; Haviv S; Asara JM; Pandolfi PP; Cantley LC
    Sci Signal; 2011 Mar; 4(163):ra13. PubMed ID: 21386094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oncogenic RAS isoforms show a hierarchical requirement for the guanine nucleotide exchange factor SOS2 to mediate cell transformation.
    Sheffels E; Sealover NE; Wang C; Kim DH; Vazirani IA; Lee E; M Terrell E; Morrison DK; Luo J; Kortum RL
    Sci Signal; 2018 Sep; 11(546):. PubMed ID: 30181243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lysines K117 and K147 play conserved roles in Ras activation from Drosophila to mammals.
    Singh J; Karunaraj P; Luf M; Pfleger CM
    G3 (Bethesda); 2023 Nov; 13(11):. PubMed ID: 37665961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of KRAS-GTPase Activity.
    Rabara D; Stephen AG
    Methods Mol Biol; 2024; 2797():91-102. PubMed ID: 38570454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peptides containing a consensus Ras binding sequence from Raf-1 and theGTPase activating protein NF1 inhibit Ras function.
    Clark GJ; Drugan JK; Terrell RS; Bradham C; Der CJ; Bell RM; Campbell S
    Proc Natl Acad Sci U S A; 1996 Feb; 93(4):1577-81. PubMed ID: 8643674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurofibromin GTPase-activating protein-related domains restore normal growth in Nf1-/- cells.
    Hiatt KK; Ingram DA; Zhang Y; Bollag G; Clapp DW
    J Biol Chem; 2001 Mar; 276(10):7240-5. PubMed ID: 11080503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An expanding role for RAS GTPase activating proteins (RAS GAPs) in cancer.
    Maertens O; Cichowski K
    Adv Biol Regul; 2014 May; 55():1-14. PubMed ID: 24814062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RAS nucleotide cycling underlies the SHP2 phosphatase dependence of mutant BRAF-, NF1- and RAS-driven cancers.
    Nichols RJ; Haderk F; Stahlhut C; Schulze CJ; Hemmati G; Wildes D; Tzitzilonis C; Mordec K; Marquez A; Romero J; Hsieh T; Zaman A; Olivas V; McCoach C; Blakely CM; Wang Z; Kiss G; Koltun ES; Gill AL; Singh M; Goldsmith MA; Smith JAM; Bivona TG
    Nat Cell Biol; 2018 Sep; 20(9):1064-1073. PubMed ID: 30104724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The differential effects of the Gly-60 to Ala mutation on the interaction of H-Ras p21 with different downstream targets.
    Hwang MC; Sung YJ; Hwang YW
    J Biol Chem; 1996 Apr; 271(14):8196-202. PubMed ID: 8626511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The GTPase-activating NF1 fragment of 91 amino acids reverses v-Ha-Ras-induced malignant phenotype.
    Nur-E-Kamal MS; Varga M; Maruta H
    J Biol Chem; 1993 Oct; 268(30):22331-7. PubMed ID: 8226742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Ras effector mutant interactions with the NF1-GAP related domain.
    Marshall MS; Hettich LA
    Oncogene; 1993 Feb; 8(2):425-31. PubMed ID: 8426748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.