BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 38858689)

  • 1. Magnetogenetics as a promising tool for controlling cellular signaling pathways.
    Latypova AA; Yaremenko AV; Pechnikova NA; Minin AS; Zubarev IV
    J Nanobiotechnology; 2024 Jun; 22(1):327. PubMed ID: 38858689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetogenetics: remote activation of cellular functions triggered by magnetic switches.
    Del Sol-Fernández S; Martínez-Vicente P; Gomollón-Zueco P; Castro-Hinojosa C; Gutiérrez L; Fratila RM; Moros M
    Nanoscale; 2022 Feb; 14(6):2091-2118. PubMed ID: 35103278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell Mechanosensors and the Possibilities of Using Magnetic Nanoparticles to Study Them and to Modify Cell Fate.
    Shen Y; Cheng Y; Uyeda TQP; Plaza GR
    Ann Biomed Eng; 2017 Oct; 45(10):2475-2486. PubMed ID: 28744841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic control of cellular processes using biofunctional nanoparticles.
    Monzel C; Vicario C; Piehler J; Coppey M; Dahan M
    Chem Sci; 2017 Nov; 8(11):7330-7338. PubMed ID: 29163884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetogenetics: remote non-invasive magnetic activation of neuronal activity with a magnetoreceptor.
    Long X; Ye J; Zhao D; Zhang SJ
    Sci Bull (Beijing); 2015; 60():2107-2119. PubMed ID: 26740890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophysiological Mechanisms and Validation of Ferritin-Based Magnetogenetics for Remote Control of Neurons.
    Hernández-Morales M; Morales-Weil K; Han SM; Han V; Tran T; Benner EJ; Pegram K; Meanor J; Miller EW; Kramer RH; Liu C
    J Neurosci; 2024 May; ():. PubMed ID: 38777598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subsecond multichannel magnetic control of select neural circuits in freely moving flies.
    Sebesta C; Torres Hinojosa D; Wang B; Asfouri J; Li Z; Duret G; Jiang K; Xiao Z; Zhang L; Zhang Q; Colvin VL; Goetz SM; Peterchev AV; Dierick HA; Bao G; Robinson JT
    Nat Mater; 2022 Aug; 21(8):951-958. PubMed ID: 35761060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orthopaedic applications of nanoparticle-based stem cell therapies.
    Wimpenny I; Markides H; El Haj AJ
    Stem Cell Res Ther; 2012 Apr; 3(2):13. PubMed ID: 22520594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic field and nano-scaffolds with stem cells to enhance bone regeneration.
    Xia Y; Sun J; Zhao L; Zhang F; Liang XJ; Guo Y; Weir MD; Reynolds MA; Gu N; Xu HHK
    Biomaterials; 2018 Nov; 183():151-170. PubMed ID: 30170257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Possible magneto-mechanical and magneto-thermal mechanisms of ion channel activation in magnetogenetics.
    Barbic M
    Elife; 2019 Aug; 8():. PubMed ID: 31373554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remote Neural Stimulation Using Magnetic Nanoparticles.
    Tay A; Di Carlo D
    Curr Med Chem; 2017; 24(5):537-548. PubMed ID: 27528057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic Mechanoactivation of Wnt Signaling Augments Dopaminergic Differentiation of Neuronal Cells.
    Rotherham M; Nahar T; Goodman T; Telling N; Gates M; El Haj A
    Adv Biosyst; 2019 Sep; 3(9):e1900091. PubMed ID: 32648650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Static Magnetic Field (SMF) as a Regulator of Stem Cell Fate - New Perspectives in Regenerative Medicine Arising from an Underestimated Tool.
    Marycz K; Kornicka K; Röcken M
    Stem Cell Rev Rep; 2018 Dec; 14(6):785-792. PubMed ID: 30225821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of magnetic field exposure on differentiation of magnetite nanoparticle-loaded adipose-derived stem cells.
    Labusca L; Herea DD; Danceanu CM; Minuti AE; Stavila C; Grigoras M; Gherca D; Stoian G; Ababei G; Chiriac H; Lupu N
    Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110652. PubMed ID: 32228923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remote control of signaling pathways using magnetic nanoparticles.
    Bonnemay L; Hoffmann C; Gueroui Z
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2015; 7(3):342-54. PubMed ID: 25377512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of low frequency magnetic fields on the growth of MNP-treated HT29 colon cancer cells.
    Spyridopoulou K; Makridis A; Maniotis N; Karypidou N; Myrovali E; Samaras T; Angelakeris M; Chlichlia K; Kalogirou O
    Nanotechnology; 2018 Apr; 29(17):175101. PubMed ID: 29498936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetically Tuning Tether Mobility of Integrin Ligand Regulates Adhesion, Spreading, and Differentiation of Stem Cells.
    Wong DS; Li J; Yan X; Wang B; Li R; Zhang L; Bian L
    Nano Lett; 2017 Mar; 17(3):1685-1695. PubMed ID: 28233497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic nanoparticle-based approaches to locally target therapy and enhance tissue regeneration in vivo.
    Sensenig R; Sapir Y; MacDonald C; Cohen S; Polyak B
    Nanomedicine (Lond); 2012 Sep; 7(9):1425-42. PubMed ID: 22994959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parallelized Manipulation of Adherent Living Cells by Magnetic Nanoparticles-Mediated Forces.
    Bongaerts M; Aizel K; Secret E; Jan A; Nahar T; Raudzus F; Neumann S; Telling N; Heumann R; Siaugue JM; Ménager C; Fresnais J; Villard C; El Haj A; Piehler J; Gates MA; Coppey M
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32911745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Neurospheroid-Based Microrobot for Targeted Neural Connections in a Hippocampal Slice.
    Kim E; Jeon S; Yang YS; Jin C; Kim JY; Oh YS; Rah JC; Choi H
    Adv Mater; 2023 Mar; 35(13):e2208747. PubMed ID: 36640750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.