These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38858891)

  • 1. Laser-induced plasma micromachining on surfaces parallel to the incident laser in different solutions.
    Zhang H; Zhang R; Gao L; Yang Z; Mao Y; Zhao N; Lu J; Wang X
    Opt Express; 2024 May; 32(10):16970-16982. PubMed ID: 38858891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study on machining characteristics of magnetically controlled laser induced plasma micro-machining single-crystal silicon.
    Zhang Y; Zhang Z; Zhang Y; Liu D; Wu J; Huang Y; Zhang G
    J Adv Res; 2021 May; 30():39-51. PubMed ID: 34026285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time control of ultrafast laser micromachining by laser-induced breakdown spectroscopy.
    Tong T; Li J; Longtin JP
    Appl Opt; 2004 Mar; 43(9):1971-80. PubMed ID: 15065729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reutilization of a reflected laser beam as an effective approach for machining metallic materials with low laser absorptivity.
    Yuan J; Liang L; Lin G; Li X
    Opt Express; 2019 Apr; 27(9):12048-12060. PubMed ID: 31052750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-Power, Multimodal Laser Micromachining of Materials for Applications in sub-5 µm Shadow Masks and sub-10 µm Interdigitated Electrodes (IDEs) Fabrication.
    Hart C; Rajaraman S
    Micromachines (Basel); 2020 Feb; 11(2):. PubMed ID: 32046367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Study of Laser Micromachining of PM Processed Ti Compact for Dental Implants Applications.
    Šugár P; Kováčik J; Šugárová J; Ludrovcová B
    Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31336851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental Study on the Influence of Tool Electrode Material on Electrochemical Micromachining of 304 Stainless Steel.
    Bian J; Ma B; Ai H; Qi L
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33946885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs.
    J Vis Exp; 2023 May; (195):. PubMed ID: 37235796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid laser precision engineering of transparent hard materials: challenges, solutions and applications.
    Liu H; Lin W; Hong M
    Light Sci Appl; 2021 Aug; 10(1):162. PubMed ID: 34354041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selected Aspects of Electrochemical Micromachining Technology Development.
    Skoczypiec S; Lipiec P; Bizoń W; Wyszyński D
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33925505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving Machining Localization and Surface Roughness in Wire Electrochemical Micromachining Using a Rotating Ultrasonic Helix Electrode.
    Ling S; Li M; Liu Y; Wang K; Jiang Y
    Micromachines (Basel); 2020 Jul; 11(7):. PubMed ID: 32707707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrolytic Characteristics of Microhole Array Manufacturing Using Polyacrylamide Electrolyte in 304 Stainless Steel.
    He J; Wang Z; Zhou W; Jian Y; Zhou L
    Micromachines (Basel); 2023 Sep; 14(10):. PubMed ID: 37893245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micromachining of Biolox Forte Ceramic Utilizing Combined Laser/Ultrasonic Processes.
    Abdo BMA; Mian SH; El-Tamimi A; Alkhalefah H; Moiduddin K
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32784508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Tuning of LIPSS Wettability during Laser Machining and through Post-Processing.
    Wood MJ; Servio P; Kietzig AM
    Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33920107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of Polytetrafluoroethylene Superhydrophobic Materials by Femtosecond Laser Processing Technology.
    Zhou S; Hu Y; Huang Y; Xu H; Wu D; Wu D; Gao X
    Polymers (Basel); 2023 Dec; 16(1):. PubMed ID: 38201708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental Optimization of Process Parameters in CuNi18Zn20 Micromachining.
    Abeni A; Metelli A; Cappellini C; Attanasio A
    Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parallel laser micromachining based on diffractive optical elements with dispersion compensated femtosecond pulses.
    Torres-Peiró S; González-Ausejo J; Mendoza-Yero O; Mínguez-Vega G; Andrés P; Lancis J
    Opt Express; 2013 Dec; 21(26):31830-6. PubMed ID: 24514778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micromachining of glassy carbon using a Yb-based master oscillator power amplifier nanosecond fiber laser.
    Li K; Chopra P; O'Neill W
    Appl Opt; 2021 Oct; 60(29):9082-9086. PubMed ID: 34623989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical quality micromachining of glass with focused laser-produced metal plasma etching in the atmosphere.
    Li C; Nikumb S
    Appl Opt; 2003 May; 42(13):2383-7. PubMed ID: 12737473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of Patterned Superhydrophobic/Hydrophilic Substrates by Laser Micromachining for Small Volume Deposition and Droplet-Based Fluorescence.
    Bachus KJ; Mats L; Choi HW; Gibson GT; Oleschuk RD
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7629-7636. PubMed ID: 28169515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.