BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 38858929)

  • 1. Fully dense generative adversarial network for removing artifacts caused by microwave dielectric effect in thermoacoustic imaging.
    Fu J; Tang X; Wang X; Jin Z; Fu Y; Zhang H; Xu X; Qin H
    Opt Express; 2024 May; 32(10):17464-17478. PubMed ID: 38858929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A high-efficient excitation-detection thermoacoustic imaging probe for breast tumor detection.
    Zhang H; Ren M; Wang Y; Qin H
    Med Phys; 2023 Mar; 50(3):1670-1679. PubMed ID: 36542398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pancreatic Cancer detection via Galectin-1-targeted Thermoacoustic Imaging: validation in an
    Qin H; Qin B; Yuan C; Chen Q; Xing D
    Theranostics; 2020; 10(20):9172-9185. PubMed ID: 32802185
    [No Abstract]   [Full Text] [Related]  

  • 4. Ultrasound image denoising using generative adversarial networks with residual dense connectivity and weighted joint loss.
    Zhang L; Zhang J
    PeerJ Comput Sci; 2022; 8():e873. PubMed ID: 35494868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Portable Microwave-Acoustic Coaxial Thermoacoustic Probe With Miniaturized Vivaldi Antennas for Breast Tumor Screening.
    Ren M; Cheng Z; Wu L; Zhang H; Zhang S; Chen X; Xing D; Qin H
    IEEE Trans Biomed Eng; 2023 Jan; 70(1):175-181. PubMed ID: 35767494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manganous-manganic oxide nanoparticle as an activatable microwave-induced thermoacoustic probe for deep-located tumor specific imaging
    Zhang S; Li W; Chen X; Ren M; Zhang H; Xing D; Qin H
    Photoacoustics; 2022 Jun; 26():100347. PubMed ID: 35345808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motion artifact removal in coronary CT angiography based on generative adversarial networks.
    Zhang L; Jiang B; Chen Q; Wang L; Zhao K; Zhang Y; Vliegenthart R; Xie X
    Eur Radiol; 2023 Jan; 33(1):43-53. PubMed ID: 35829786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-fidelity fast volumetric brain MRI using synergistic wave-controlled aliasing in parallel imaging and a hybrid denoising generative adversarial network (HDnGAN).
    Li Z; Tian Q; Ngamsombat C; Cartmell S; Conklin J; Filho ALMG; Lo WC; Wang G; Ying K; Setsompop K; Fan Q; Bilgic B; Cauley S; Huang SY
    Med Phys; 2022 Feb; 49(2):1000-1014. PubMed ID: 34961944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of generative adversarial networks (GAN) for ophthalmology image domains: a survey.
    You A; Kim JK; Ryu IH; Yoo TK
    Eye Vis (Lond); 2022 Feb; 9(1):6. PubMed ID: 35109930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Split Ring Resonator Topology Based Microwave Induced Thermoacoustic Imaging (SRR-MTAI).
    Liu Q; Liang X; Li T; Chao W; Qi W; Jin T; Gong Y; Jiang H; Xi L
    IEEE Trans Med Imaging; 2023 Aug; 42(8):2425-2438. PubMed ID: 37028075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increasing dielectric loss of a graphene oxide nanoparticle to enhance the microwave thermoacoustic imaging contrast of breast tumor.
    Yuan C; Qin B; Qin H; Xing D
    Nanoscale; 2019 Nov; 11(46):22222-22229. PubMed ID: 31735945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A stimulated liquid-gas phase transition nanoprobe dedicated to enhance the microwave thermoacoustic imaging contrast of breast tumors.
    Zhang L; Qin H; Zeng F; Wu Z; Wu L; Zhao S; Xing D
    Nanoscale; 2020 Aug; 12(30):16034-16040. PubMed ID: 32720966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Segmentation and artifact removal in microwave-induced thermoacoustic imaging.
    Nan H; Chou TC; Arbabian A
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4747-50. PubMed ID: 25571053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility of a Generative Adversarial Network for Artifact Removal in Experimental Photoacoustic Imaging.
    Shahid H; Khalid A; Yue Y; Liu X; Ta D
    Ultrasound Med Biol; 2022 Aug; 48(8):1628-1643. PubMed ID: 35660105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perception-oriented generative adversarial network for retinal fundus image super-resolution.
    Zhao L; Chi H; Zhong T; Jia Y
    Comput Biol Med; 2024 Jan; 168():107708. PubMed ID: 37995535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semi-supervised segmentation of lesion from breast ultrasound images with attentional generative adversarial network.
    Han L; Huang Y; Dou H; Wang S; Ahamad S; Luo H; Liu Q; Fan J; Zhang J
    Comput Methods Programs Biomed; 2020 Jun; 189():105275. PubMed ID: 31978805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unsupervised arterial spin labeling image superresolution via multiscale generative adversarial network.
    Cui J; Gong K; Han P; Liu H; Li Q
    Med Phys; 2022 Apr; 49(4):2373-2385. PubMed ID: 35048390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SOUP-GAN: Super-Resolution MRI Using Generative Adversarial Networks.
    Zhang K; Hu H; Philbrick K; Conte GM; Sobek JD; Rouzrokh P; Erickson BJ
    Tomography; 2022 Mar; 8(2):905-919. PubMed ID: 35448707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Generative Adversarial Network technique for high-quality super-resolution reconstruction of cardiac magnetic resonance images.
    Zhao M; Wei Y; Wong KKL
    Magn Reson Imaging; 2022 Jan; 85():153-160. PubMed ID: 34699953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utilizing deep learning techniques to improve image quality and noise reduction in preclinical low-dose PET images in the sinogram domain.
    Manoj Doss KK; Chen JC
    Med Phys; 2024 Jan; 51(1):209-223. PubMed ID: 37966121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.