These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38858944)

  • 21. Raman Spectroscopic Detection for Simulants of Chemical Warfare Agents Using a Spatial Heterodyne Spectrometer.
    Hu G; Xiong W; Luo H; Shi H; Li Z; Shen J; Fang X; Xu B; Zhang J
    Appl Spectrosc; 2018 Jan; 72(1):151-158. PubMed ID: 28627233
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Theoretical analysis of a multi-grating-based cross-dispersed spatial heterodyne spectrometer.
    Chu Q; Li X; Sun Y; Jirigalantu ; Sun C; Chen J; Li F; Bayanheshig
    Opt Express; 2023 May; 31(11):18190-18209. PubMed ID: 37381535
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultraviolet Stand-off Raman Measurements Using a Gated Spatial Heterodyne Raman Spectrometer.
    Lamsal N; Sharma SK; Acosta TE; Angel SM
    Appl Spectrosc; 2016 Apr; 70(4):666-75. PubMed ID: 26883731
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Broadband transmission Raman measurements using a field-widened spatial heterodyne Raman spectrometer with mosaic grating structure.
    Qiu J; Qi X; Li X; Tang Y; Lantu J; Mi X; Bayan H
    Opt Express; 2018 Oct; 26(20):26106-26119. PubMed ID: 30469702
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detection of microplastics based on spatial heterodyne Raman spectroscopy.
    Xue Q; Wang N; Yang H; Yang J; Bai H
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Dec; 283():121712. PubMed ID: 35952588
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Suppressing the Multiplex Disadvantage in Photon-Noise Limited Interferometry Using Cross-Dispersed Spatial Heterodyne Spectrometry.
    Egan MJ; Colón AM; Angel SM; Sharma SK
    Appl Spectrosc; 2021 Feb; 75(2):208-215. PubMed ID: 32662290
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Raman spectroscopy using a spatial heterodyne spectrometer: proof of concept.
    Gomer NR; Gordon CM; Lucey P; Sharma SK; Carter JC; Angel SM
    Appl Spectrosc; 2011 Aug; 65(8):849-57. PubMed ID: 21819774
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improving Spectral Results Using Row-by-Row Fourier Transform of Spatial Heterodyne Raman Spectrometer Interferogram.
    Barnett PD; Strange KA; Angel SM
    Appl Spectrosc; 2017 Jun; 71(6):1380-1386. PubMed ID: 27956594
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Grating Spectrometry and Spatial Heterodyne Fourier Transform Spectrometry: Comparative Noise Analysis for Raman Measurements.
    Ciaffoni L; Matousek P; Parker W; McCormack EA; Mortimer H
    Appl Spectrosc; 2021 Mar; 75(3):241-249. PubMed ID: 33044086
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High performance resonance Raman spectroscopy using volume Bragg gratings as tunable light filters.
    Paillet M; Meunier F; Verhaegen M; Blais-Ouellette S; Martel R
    Rev Sci Instrum; 2010 May; 81(5):053111. PubMed ID: 20515128
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Standoff Laser-Induced Breakdown Spectroscopy (LIBS) Using a Miniature Wide Field of View Spatial Heterodyne Spectrometer with Sub-Microsteradian Collection Optics.
    Barnett PD; Lamsal N; Angel SM
    Appl Spectrosc; 2017 Apr; 71(4):583-590. PubMed ID: 28103051
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis and Classification of Liquid Samples Using Spatial Heterodyne Raman Spectroscopy.
    Gojani AB; Palásti DJ; Paul A; Galbács G; Gornushkin IB
    Appl Spectrosc; 2019 Dec; 73(12):1409-1419. PubMed ID: 31271293
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design study of a cross-dispersed spatial heterodyne spectrometer.
    Chu Q; Li X; Jirigalantu ; Sun C; Chen J; Wang J; Sun Y; Bayanheshig
    Opt Express; 2022 Mar; 30(7):10547-10562. PubMed ID: 35473018
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Microscopic raman spectral imaging of oily core].
    Huang QS; Yu ZX; Li J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Dec; 28(12):2880-4. PubMed ID: 19248505
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling the inhibition of stimulated Raman scattering in passive and active fibers by lumped spectral filters in high power fiber laser systems.
    Jansen F; Nodop D; Jauregui C; Limpert J; Tünnermann A
    Opt Express; 2009 Aug; 17(18):16255-65. PubMed ID: 19724625
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Matched spectral filter based on reflection holograms for analyte identification.
    Cao L; Gu C
    Appl Opt; 2009 Dec; 48(36):6973-9. PubMed ID: 20029600
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of chemical warfare agents by portable Raman spectrometer with both 785nm and 1064nm excitation.
    Kondo T; Hashimoto R; Ohrui Y; Sekioka R; Nogami T; Muta F; Seto Y
    Forensic Sci Int; 2018 Oct; 291():23-38. PubMed ID: 30125768
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A coma-free super-high resolution optical spectrometer using 44 high dispersion sub-gratings.
    Tu HT; Jiang AQ; Chen JK; Lu WJ; Zang KY; Tang HQ; Yoshie O; Xiang XD; Lee YP; Zhao HB; Zheng YX; Wang SY; Guo J; Zhang RJ; Li J; Yang YM; Lynch WD; Chen LY
    Sci Rep; 2021 Jan; 11(1):1093. PubMed ID: 33441851
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simulation for measurement of lightning channel temperature using a dual-band high-precision lightning imaging spectrometer.
    Wang J; Gao H; Zhu D; Huang S; Zhou H; Kou L
    Appl Opt; 2021 Apr; 60(11):3192-3202. PubMed ID: 33983219
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-quality large-scale electron-beam-written resonant filters for the long-wave infrared region.
    Gupta N; Song J
    Opt Lett; 2021 Jan; 46(2):348-351. PubMed ID: 33449025
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.