These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 38858968)

  • 1. Compensated DOE in a VHG-based waveguide display to improve uniformity.
    Guo M; Guo Y; Cai J; Wang Z; Lv G; Feng Q
    Opt Express; 2024 May; 32(10):18017-18032. PubMed ID: 38858968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uniformity improvement of two-dimensional surface relief grating waveguide display using particle swarm optimization.
    Ni D; Cheng D; Liu Y; Wang X; Yao C; Yang T; Chi C; Wang Y
    Opt Express; 2022 Jul; 30(14):24523-24543. PubMed ID: 36237005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Angular uniformity improvement of diffractive waveguide display based on region geometry optimization.
    Li Z; Gao C; Li H; Wu R; Liu X
    Appl Opt; 2024 Apr; 63(10):2494-2502. PubMed ID: 38568528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic-algorithm-based waveguide display system with a multiplexed volume holographic grating.
    Feng Q; Cai J; Guo Y; Guo M; Zi W; Lv G
    Appl Opt; 2024 Mar; 63(8):2070-2077. PubMed ID: 38568649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Holographic Recording Performance of Acrylate-Based Photopolymer under Different Preparation Conditions for Waveguide Display.
    Shen Z; Weng Y; Zhang Y; Wang C; Liu A; Li X
    Polymers (Basel); 2021 Mar; 13(6):. PubMed ID: 33803646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compact pupil-expansion AR-HUD based on surface-relief grating.
    Dai G; Yang H; Yin L; Ren K; Liu J; Zhang X; Zhang J
    Opt Express; 2024 Feb; 32(5):6917-6928. PubMed ID: 38439386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient coupling to a waveguide by combined gratings in a holographic waveguide display system.
    Yang L; Tu Y; Shi Z; Guo J; Wang L; Zhang Y; Li X; Wang B
    Appl Opt; 2018 Dec; 57(35):10135-10145. PubMed ID: 30645218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a high-performance in-coupling grating using differential evolution algorithm for waveguide display.
    Pan C; Liu Z; Pang Y; Zheng X; Cai H; Zhang Y; Huang Z
    Opt Express; 2018 Oct; 26(20):26646-26662. PubMed ID: 30469747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of gradient period polarization volume gratings for augmented reality displays.
    Yang C; Wei R; Yang W; Weng Y; Gu Y; Wang C; Shen Z; Wang B; Zhang Y
    Opt Express; 2024 Jun; 32(12):21243-21257. PubMed ID: 38859483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced diffraction efficiency with angular selectivity by inserting an optical interlayer into a diffractive waveguide for augmented reality displays.
    Lin Y; Xu H; Shi R; Lu L; Zhang ST; Li D
    Opt Express; 2022 Aug; 30(17):31244-31255. PubMed ID: 36242211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of an ultra-thin, wide-angle, stray-light-free near-eye display with a dual-layer geometrical waveguide.
    Wang Q; Cheng D; Hou Q; Gu L; Wang Y
    Opt Express; 2020 Nov; 28(23):35376-35394. PubMed ID: 33182985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and fabrication method of holographic waveguide near-eye display with 2D eye box expansion.
    Ni D; Cheng D; Wang Y; Yang T; Wang X; Chi C; Wang Y
    Opt Express; 2023 Mar; 31(7):11019-11040. PubMed ID: 37155747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-efficiency and compact two-dimensional exit pupil expansion design for diffractive waveguide based on polarization volume grating.
    Weng Y; Zhang Y; Wang W; Gu Y; Wang C; Wei R; Zhang L; Wang B
    Opt Express; 2023 Feb; 31(4):6601-6614. PubMed ID: 36823912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling and optimizing the chromatic holographic waveguide display system.
    Zhang Y; Zhu X; Liu A; Weng Y; Shen Z; Wang B
    Appl Opt; 2019 Dec; 58(34):G84-G90. PubMed ID: 31873488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-axis near-eye display system based on directional scattering holographic waveguide and curved goggle.
    Xiao J; Liu J; Lv Z; Shi X; Han J
    Opt Express; 2019 Jan; 27(2):1683-1692. PubMed ID: 30696230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eyebox uniformity optimization over the full field of view for optical waveguide displays based on linked list processing.
    Yan S; Zhang E; Guo J; Jia P; Yang K; Kong L
    Opt Express; 2022 Oct; 30(21):38139-38151. PubMed ID: 36258383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Achieving high levels of color uniformity and optical efficiency for a wedge-shaped waveguide head-mounted display using a photopolymer.
    Piao ML; Kim N
    Appl Opt; 2014 Apr; 53(10):2180-6. PubMed ID: 24787179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Augmented reality display with high eyebox uniformity over the full field of view based on a random mask grating.
    Wu Y; Pan C; Lu C; Zhang Y; Zhang L; Huang Z
    Opt Express; 2024 May; 32(10):17409-17423. PubMed ID: 38858925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing the color gamut of waveguide displays for augmented reality head-mounted displays through spatially modulated diffraction grating.
    Lee JS; Cho SH; Choi WJ; Choi YW
    Sci Rep; 2024 Apr; 14(1):8821. PubMed ID: 38627454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design method of a wide-angle AR display with a single-layer two-dimensional pupil expansion geometrical waveguide.
    Cheng D; Wang Q; Wei L; Wang X; Zhou L; Hou Q; Duan J; Yang T; Wang Y
    Appl Opt; 2022 Jul; 61(19):5813-5822. PubMed ID: 36255817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.