These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38858986)

  • 1. Broad-band-enhanced plasmonic random laser in silver nanostar arrays.
    Liu F; Xin X; Chang S; Liang N; Cui L; Zhai T
    Opt Express; 2024 May; 32(10):18247-18256. PubMed ID: 38858986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable random laser based on hybrid plasmonic enhancement.
    Gohar A; Yan J; Xu Z; Shen K; Anwar H; Shi X; Iqbal N; Zhai T
    Opt Express; 2023 Oct; 31(22):36150-36160. PubMed ID: 38017770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid Multilayered Plasmonic Nanostars for Coherent Random Lasing.
    Munkhbat B; Ziegler J; Pöhl H; Wörister C; Sivun D; Scharber MC; Klar TA; Hrelescu C
    J Phys Chem C Nanomater Interfaces; 2016 Oct; 120(41):23707-23715. PubMed ID: 27795752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface plasmon-enhanced photoluminescence of DCJTB by using silver nanoparticle arrays.
    Huang HL; Chou CF; Shiao SH; Liu YC; Huang JJ; Jen SU; Chiang HP
    Opt Express; 2013 Sep; 21 Suppl 5():A901-8. PubMed ID: 24104584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable random lasing behavior in plasmonic nanostructures.
    Yadav A; Zhong L; Sun J; Jiang L; Cheng GJ; Chi L
    Nano Converg; 2017; 4(1):1. PubMed ID: 28191445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonant energy transfer and light scattering enhancement of plasmonic random lasers embedded with silver nanoplates.
    Hsiao JH; Chen SW; Hung BY; Uma K; Chen WC; Kuo CC; Lin JH
    RSC Adv; 2020 Feb; 10(13):7551-7558. PubMed ID: 35492161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced UV Emission from ZnO on Silver Nanoparticle Arrays by the Surface Plasmon Resonance Effect.
    Wang X; Ye Q; Bai LH; Su X; Wang TT; Peng TW; Zhai XQ; Huo Y; Wu H; Liu C; Bu YY; Ma XH; Hao Y; Ao JP
    Nanoscale Res Lett; 2021 Jan; 16(1):8. PubMed ID: 33411061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic Nanostars as Efficient Broadband Scatterers for Random Lasing.
    Ziegler J; Wörister C; Vidal C; Hrelescu C; Klar TA
    ACS Photonics; 2016 Jun; 3(6):919-923. PubMed ID: 27347494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold nanostars for random lasing enhancement.
    Ziegler J; Djiango M; Vidal C; Hrelescu C; Klar TA
    Opt Express; 2015 Jun; 23(12):15152-9. PubMed ID: 26193498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate.
    Zhai T; Chen J; Chen L; Wang J; Wang L; Liu D; Li S; Liu H; Zhang X
    Nanoscale; 2015 Feb; 7(6):2235-40. PubMed ID: 25565214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible random lasers with tunable lasing emissions.
    Lee YJ; Chou CY; Yang ZP; Nguyen TBH; Yao YC; Yeh TW; Tsai MT; Kuo HC
    Nanoscale; 2018 Jun; 10(22):10403-10411. PubMed ID: 29671442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hollow Au/Ag nanostars displaying broad plasmonic resonance and high surface-enhanced Raman sensitivity.
    Garcia-Leis A; Torreggiani A; Garcia-Ramos JV; Sanchez-Cortes S
    Nanoscale; 2015 Aug; 7(32):13629-37. PubMed ID: 26206266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmon-assisted random lasing from a single-mode fiber tip.
    Khatri DS; Li Y; Chen J; Stocks AE; Kwizera EA; Huang X; Argyropoulos C; Hoang T
    Opt Express; 2020 May; 28(11):16417-16426. PubMed ID: 32549465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoplasmonic Alloy of Au/Ag Nanocomposites on Paper Substrate for Biosensing Applications.
    Park M; Hwang CSH; Jeong KH
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):290-295. PubMed ID: 29220574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lasing action in strongly coupled plasmonic nanocavity arrays.
    Zhou W; Dridi M; Suh JY; Kim CH; Co DT; Wasielewski MR; Schatz GC; Odom TW
    Nat Nanotechnol; 2013 Jul; 8(7):506-11. PubMed ID: 23770807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-area periodic arrays of gold nanostars derived from HEPES-, DMF-, and ascorbic-acid-driven syntheses.
    Demille TB; Hughes RA; Dominique N; Olson JE; Rouvimov S; Camden JP; Neretina S
    Nanoscale; 2020 Aug; 12(31):16489-16500. PubMed ID: 32790810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced lasing assisted by the Ag-encapsulated Au plasmonic nanorods.
    Ning S; Wu Z; Dong H; Yuan F; Xi J; Ma L; Jiao B; Hou X
    Opt Lett; 2015 Mar; 40(6):990-3. PubMed ID: 25768164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-Situ Monitoring the SERS Spectra of para-Aminothiophenol Adsorbed on Plasmon-Tunable Au@Ag Core-Shell Nanostars.
    Ke Y; Chen B; Hu M; Zhou N; Huang Z; Meng G
    Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [NIR-SERS Spectra Detection of Cytidine on Nano-Silver Films].
    Zhang DQ; Liu RM; Zhang GQ; Zhang Y; Xiong Y; Zhang CY; Li L; Si MZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Mar; 36(3):743-8. PubMed ID: 27400517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning gold nanostar morphology for the SERS detection of uranyl.
    Harder RA; Wijenayaka LA; Phan HT; Haes AJ
    J Raman Spectrosc; 2021 Feb; 52(2):497-505. PubMed ID: 34177076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.