These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38859009)

  • 1. Reduction of relative intensity noise in a diamond Raman laser.
    Liu Y; Yang X; Zhu C; Sun Y; Li M; Cheng X; Mildren RP; Chen D; Chen W; Feng Y
    Opt Express; 2024 May; 32(11):18562-18571. PubMed ID: 38859009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Secondary Raman and Brillouin mode suppression in two- and three-mirror-cavity diamond Raman lasers.
    Li M; Yang X; Sun Y; Jiang H; Mildren RP; Kitzler O; Spence DJ; Feng Y
    Opt Express; 2023 Feb; 31(5):8622-8631. PubMed ID: 36859973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of linewidth on intensity noise induced by stimulated Brillouin scattering in single-mode fibers.
    Zhao J; Yang F; Wei F; Zhang X; Ding Z; Wu R; Cai H
    Opt Express; 2020 May; 28(10):15025-15034. PubMed ID: 32403535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation about the influence of longitudinal-mode structure of the laser on the relative intensity noise properties.
    Guo Y; Lu H; Xu M; Su J; Peng K
    Opt Express; 2018 Aug; 26(16):21108-21118. PubMed ID: 30119415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-noise high-order Raman fiber laser pumped by random lasing.
    Han B; Rao Y; Wu H; Yao J; Guan H; Ma R; Wang Z
    Opt Lett; 2020 Oct; 45(20):5804-5807. PubMed ID: 33057289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relative intensity noise in a multi-Stokes Brillouin laser.
    Sebastian A; Balakireva IV; Fresnel S; Trebaol S; Besnard P
    Opt Express; 2018 Dec; 26(26):33700-33711. PubMed ID: 30650803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gain dynamics in Raman fiber lasers and passive pump-to-Stokes RIN suppression.
    Steinke M; Neumann J; Kracht D; Wessels P
    Opt Express; 2015 Jun; 23(13):16823-37. PubMed ID: 26191694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intensity noise suppression in mode-locked fiber lasers by double optical bandpass filtering.
    Kim D; Zhang S; Kwon D; Liao R; Cui Y; Zhang Z; Song Y; Kim J
    Opt Lett; 2017 Oct; 42(20):4095-4098. PubMed ID: 29028021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanosecond pulsed single longitudinal mode diamond Raman laser in the 1.6 µm spectral region.
    Ma H; Wei X; Zhao H; Zhang M; Zhou H; Zhu S; Yin H; Li Z; Chen Z; Shen Y; Zong N; Zhang S; Dai S
    Opt Lett; 2022 May; 47(9):2210-2213. PubMed ID: 35486762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observation of RIN reduction via spectral broadening in an NPR-based stretched pulse fiber laser.
    Xu Z; Huang Q; Tian H; Huang Z; Dai L; Yan K; Song Y; Mou C
    Opt Lett; 2023 Oct; 48(20):5395-5398. PubMed ID: 37831876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short single-frequency self-pulsing Brillouin-Raman distributed feedback fiber laser.
    Bannerman RHS; Smith DH; Gray AC; Gates JC; Broderick NGR; Gawith CBE; Smith PGR
    Opt Express; 2022 Apr; 30(8):12427-12439. PubMed ID: 35472879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A single-frequency intracavity Raman laser.
    Sheng Q; Li R; Lee AJ; Spence DJ; Pask HM
    Opt Express; 2019 Mar; 27(6):8540-8553. PubMed ID: 31052669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-efficiency Brillouin random fiber laser using all-polarization maintaining ring cavity.
    Zhang L; Wang C; Li Z; Xu Y; Saxena B; Gao S; Chen L; Bao X
    Opt Express; 2017 May; 25(10):11306-11314. PubMed ID: 28788812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pump RIN reduction of the TMI threshold powers in Yb-doped kW class fiber amplifiers.
    Mermelstein MD
    Appl Opt; 2022 Jan; 61(3):751-758. PubMed ID: 35200780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectral and RIN properties of a single-frequency Raman fiber amplifier co-pumped by ASE source.
    Cheng X; Cui S; Zeng X; Zhou J; Feng Y
    Opt Express; 2021 May; 29(10):15764-15771. PubMed ID: 33985271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of 100G DP-QPSK long-haul transmission performance using second order co-pumped Raman laser based amplification.
    Tan M; Rosa P; Le ST; Phillips ID; Harper P
    Opt Express; 2015 Aug; 23(17):22181-9. PubMed ID: 26368191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating single-longitudinal-mode operation of a continuous wave second Stokes diamond Raman ring laser.
    Li M; Kitzler O; Spence DJ
    Opt Express; 2020 Jan; 28(2):1738-1744. PubMed ID: 32121880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diamond Raman oscillator operating at 1178  nm.
    Heinzig M; Palma-Vega G; Walbaum T; Schreiber T; Eberhardt R; Tünnermann A
    Opt Lett; 2020 May; 45(10):2898-2901. PubMed ID: 32412496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Linewidth on the Relative Intensity Noise in Random Distributed Feedback Raman Fiber Lasers.
    Rota-Rodrigo S; Leandro D; Santarelli G; Lopez-Amo M; Ania-Castañón JD
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation and suppression of the pump-to-Stokes relative intensity noise transfer in chalcogenide waveguide Raman laser.
    Huang Y; Zhou H; Shum PP; Luan F; Fu S; Tang M; Tan EL
    Opt Lett; 2011 Jun; 36(12):2366-8. PubMed ID: 21686022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.