These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38859009)

  • 21. Polarization-maintaining nonlinear-amplifying-loop-mirror mode-locked fiber laser based on a 3  ×  3 coupler.
    Kim D; Kwon D; Lee B; Kim J
    Opt Lett; 2019 Mar; 44(5):1068-1071. PubMed ID: 30821772
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wideband tunable optoelectronic oscillator based on the deamplification of stimulated Brillouin scattering.
    Peng H; Xu Y; Peng X; Zhu X; Guo R; Chen F; Du H; Chen Y; Zhang C; Zhu L; Hu W; Chen Z
    Opt Express; 2017 May; 25(9):10287-10305. PubMed ID: 28468402
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integrated photonic molecule Brillouin laser with a high-power sub-100-mHz fundamental linewidth.
    Liu K; Wang J; Chauhan N; Harrington MW; Nelson KD; Blumenthal DJ
    Opt Lett; 2024 Jan; 49(1):45-48. PubMed ID: 38134148
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Diamond sodium guide star laser.
    Yang X; Kitzler O; Spence DJ; Bai Z; Feng Y; Mildren RP
    Opt Lett; 2020 Apr; 45(7):1898-1901. PubMed ID: 32236027
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intensity noise suppression of a high-power single-frequency CW laser by controlling the stimulated emission rate.
    Guo Y; Lu H; Peng W; Su J; Peng K
    Opt Lett; 2019 Dec; 44(24):6033-6036. PubMed ID: 32628212
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nonlinear coupling of relative intensity noise from pump to a fiber ring laser mode-locked with carbon nanotubes.
    Wu K; Wong JH; Shum P; Fu S; Ouyang C; Wang H; Kelleher EJ; Chernov AI; Obraztsova ED; Chen J
    Opt Express; 2010 Aug; 18(16):16663-70. PubMed ID: 20721057
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relative intensity noise of a continuous-wave interband cascade laser at room temperature.
    Deng Y; Zhao BB; Gu YT; Wang C
    Opt Lett; 2019 Mar; 44(6):1375-1378. PubMed ID: 30874654
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of different Raman pumping schemes on stimulated Brillouin scattering in a linear cavity.
    Shirazi MR; Biglary M; Harun SW; Thambiratnam K; Ahmad H
    Appl Opt; 2008 Jun; 47(17):3088-91. PubMed ID: 18545279
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tunable single frequency Hz-magnitude narrow linewidth Brillouin fiber laser based on parity-time symmetry.
    Lv Y; Yin B; Chen X; Sang G; Liu S; Li G; Xiao S; Wang M; Wu S
    Opt Express; 2024 Feb; 32(4):4974-4986. PubMed ID: 38439235
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distributed Raman amplification using ultra-long fiber laser with a ring cavity: characteristics and sensing application.
    Jia XH; Rao YJ; Wang ZN; Zhang WL; Yuan CX; Yan XD; Li J; Wu H; Zhu YY; Peng F
    Opt Express; 2013 Sep; 21(18):21208-17. PubMed ID: 24103994
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of the Noise Induced by Stimulated Brillouin Scattering in Distributed Sensing.
    Kadum JE; Feng C; Schneider T
    Sensors (Basel); 2020 Aug; 20(15):. PubMed ID: 32748852
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 1.6 W continuous-wave Raman laser using low-loss synthetic diamond.
    Lubeigt W; Savitski VG; Bonner GM; Geoghegan SL; Friel I; Hastie JE; Dawson MD; Burns D; Kemp AJ
    Opt Express; 2011 Mar; 19(7):6938-44. PubMed ID: 21451719
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling and characterization of high-power single frequency free-space Brillouin lasers.
    Jin D; Bai Z; Li M; Yang X; Wang Y; Mildren RP; Lu Z
    Opt Express; 2023 Jan; 31(2):2942-2955. PubMed ID: 36785296
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Low-noise Brillouin random fiber laser with a random grating-based resonator.
    Xu Y; Gao S; Lu P; Mihailov S; Chen L; Bao X
    Opt Lett; 2016 Jul; 41(14):3197-200. PubMed ID: 27420494
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intensity noise in high-frequency range of an external cavity diode laser and its reduction by second harmonic generation.
    Qin X; Ying K; Fang Z; Wei F; Chen D; Qu R; Cai H
    Opt Lett; 2018 Aug; 43(16):3973-3976. PubMed ID: 30106930
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-power and near-shot-noise-limited intensity noise all-fiber single-frequency 1.5 μm MOPA laser.
    Yang C; Guan X; Zhao Q; Wu B; Feng Z; Gan J; Cheng H; Peng M; Yang Z; Xu S
    Opt Express; 2017 Jun; 25(12):13324-13331. PubMed ID: 28788868
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 22.5-W narrow-linewidth diamond Brillouin laser at 1064 nm.
    Jin D; Bai Z; Lu Z; Fan R; Zhao Z; Yang X; Wang Y; Mildren RP
    Opt Lett; 2022 Oct; 47(20):5360-5363. PubMed ID: 36240362
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hybrid distributed Raman amplification combining random fiber laser based 2nd-order and low-noise LD based 1st-order pumping.
    Jia XH; Rao YJ; Yuan CX; Li J; Yan XD; Wang ZN; Zhang WL; Wu H; Zhu YY; Peng F
    Opt Express; 2013 Oct; 21(21):24611-9. PubMed ID: 24150305
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A continuous-wave Raman silicon laser.
    Rong H; Jones R; Liu A; Cohen O; Hak D; Fang A; Paniccia M
    Nature; 2005 Feb; 433(7027):725-8. PubMed ID: 15716948
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adaptive noise canceling for transient absorption microscopy.
    Wang E; Gupta S; Wilson J
    J Biomed Opt; 2020 Oct; 25(10):. PubMed ID: 33058592
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.