These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 38859027)
61. A comparative study based on image quality and clinical task performance for CT reconstruction algorithms in radiotherapy. Li H; Dolly S; Chen HC; Anastasio MA; Low DA; Li HH; Michalski JM; Thorstad WL; Gay H; Mutic S J Appl Clin Med Phys; 2016 Jul; 17(4):377-390. PubMed ID: 27455472 [TBL] [Abstract][Full Text] [Related]
62. Short-axis PET image quality improvement based on a uEXPLORER total-body PET system through deep learning. Huang Z; Li W; Wu Y; Guo N; Yang L; Zhang N; Pang Z; Yang Y; Zhou Y; Shang Y; Zheng H; Liang D; Wang M; Hu Z Eur J Nucl Med Mol Imaging; 2023 Dec; 51(1):27-39. PubMed ID: 37672046 [TBL] [Abstract][Full Text] [Related]
63. Image Reconstruction Using Supervised Learning in Wearable Electrical Impedance Tomography of the Thorax. Ivanenko M; Smolik WT; Wanta D; Midura M; Wróblewski P; Hou X; Yan X Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765831 [TBL] [Abstract][Full Text] [Related]
64. Compressive phase object classification using single-pixel digital holography. Endo Y; Nakajima G Opt Express; 2022 Jul; 30(15):28057-28066. PubMed ID: 36236962 [TBL] [Abstract][Full Text] [Related]
65. Noise2Void: unsupervised denoising of PET images. Song TA; Yang F; Dutta J Phys Med Biol; 2021 Nov; 66(21):. PubMed ID: 34663767 [No Abstract] [Full Text] [Related]
66. Parallel-stream fusion of scan-specific and scan-general priors for learning deep MRI reconstruction in low-data regimes. Dar SUH; Öztürk Ş; Özbey M; Oguz KK; Çukur T Comput Biol Med; 2023 Dec; 167():107610. PubMed ID: 37883853 [TBL] [Abstract][Full Text] [Related]
67. Ultrasound image reconstruction from plane wave radio-frequency data by self-supervised deep neural network. Zhang J; He Q; Xiao Y; Zheng H; Wang C; Luo J Med Image Anal; 2021 May; 70():102018. PubMed ID: 33711740 [TBL] [Abstract][Full Text] [Related]
68. Uncertainty-Aware Deep Learning With Cross-Task Supervision for PHE Segmentation on CT Images. Kuang Z; Yan Z; Yu L; Deng X; Hua Y; Li S IEEE J Biomed Health Inform; 2022 Jun; 26(6):2615-2626. PubMed ID: 34986106 [TBL] [Abstract][Full Text] [Related]
69. Image-based shading correction for narrow-FOV truncated pelvic CBCT with deep convolutional neural networks and transfer learning. Rossi M; Belotti G; Paganelli C; Pella A; Barcellini A; Cerveri P; Baroni G Med Phys; 2021 Nov; 48(11):7112-7126. PubMed ID: 34636429 [TBL] [Abstract][Full Text] [Related]
70. Complementation-reinforced network for integrated reconstruction and segmentation of pulmonary gas MRI with high acceleration. Li Z; Xiao S; Wang C; Li H; Zhao X; Zhou Q; Rao Q; Fang Y; Xie J; Shi L; Ye C; Zhou X Med Phys; 2024 Jan; 51(1):378-393. PubMed ID: 37401205 [TBL] [Abstract][Full Text] [Related]
71. Semi-Supervised Pixel-Level Scene Text Segmentation by Mutually Guided Network. Wang C; Zhao S; Zhu L; Luo K; Guo Y; Wang J; Liu S IEEE Trans Image Process; 2021; 30():8212-8221. PubMed ID: 34546922 [TBL] [Abstract][Full Text] [Related]
72. Improving single pixel imaging performance in high noise condition by under-sampling. Sha F; Sahoo SK; Lam HQ; Ng BK; Dang C Sci Rep; 2020 Nov; 10(1):19451. PubMed ID: 33173157 [TBL] [Abstract][Full Text] [Related]
73. Feedback attention network for cardiac magnetic resonance imaging super-resolution. Zhu D; He H; Wang D Comput Methods Programs Biomed; 2023 Apr; 231():107313. PubMed ID: 36739626 [TBL] [Abstract][Full Text] [Related]
74. Deep learning based projector defocus compensation in single-pixel imaging. Rizvi S; Cao J; Hao Q Opt Express; 2020 Aug; 28(17):25134-25148. PubMed ID: 32907042 [TBL] [Abstract][Full Text] [Related]
75. Multimodal image translation via deep learning inference model trained in video domain. Fan J; Liu Z; Yang D; Qiao J; Zhao J; Wang J; Hu W BMC Med Imaging; 2022 Jul; 22(1):124. PubMed ID: 35836126 [TBL] [Abstract][Full Text] [Related]
76. ReFs: A hybrid pre-training paradigm for 3D medical image segmentation. Xie Y; Zhang J; Liu L; Wang H; Ye Y; Verjans J; Xia Y Med Image Anal; 2024 Jan; 91():103023. PubMed ID: 37956551 [TBL] [Abstract][Full Text] [Related]
77. Label-driven magnetic resonance imaging (MRI)-transrectal ultrasound (TRUS) registration using weakly supervised learning for MRI-guided prostate radiotherapy. Zeng Q; Fu Y; Tian Z; Lei Y; Zhang Y; Wang T; Mao H; Liu T; Curran WJ; Jani AB; Patel P; Yang X Phys Med Biol; 2020 Jun; 65(13):135002. PubMed ID: 32330922 [TBL] [Abstract][Full Text] [Related]
79. Two-and-a-half order score-based model for solving 3D ill-posed inverse problems. Li Z; Wang Y; Zhang J; Wu W; Yu H Comput Biol Med; 2024 Jan; 168():107819. PubMed ID: 38064853 [TBL] [Abstract][Full Text] [Related]
80. Weakly Supervised Neuron Reconstruction From Optical Microscopy Images With Morphological Priors. Chen X; Zhang C; Zhao J; Xiong Z; Zha ZJ; Wu F IEEE Trans Med Imaging; 2021 Nov; 40(11):3205-3216. PubMed ID: 33999814 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]