These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38859055)

  • 1. Study on the influence of a magnetorheological finishing path on the mid-frequency errors of optical element surfaces.
    Chen C; Dai Y; Hu H; Guan C
    Opt Express; 2024 May; 32(11):19133-19145. PubMed ID: 38859055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Research on the influence of the non-stationary effect of the magnetorheological finishing removal function on mid-frequency errors of optical component surfaces.
    Wang B; Tie G; Shi F; Song C; Guo S
    Opt Express; 2023 Oct; 31(21):35016-35031. PubMed ID: 37859243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal Modeling and Experimental Verification of Magnetorheological Polishing Fused Silica Glass.
    Zhang L; Li W; Zhou J; Lu M; Liu Q; Du Y; Yang Y
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on the Absorption Characteristics and Laser Damage Properties of Fused Silica Optics under Flexible Polishing and Shallow DCE Process.
    Zhang W; Shi F; Song C; Tian Y; Shen Y
    Micromachines (Basel); 2021 Oct; 12(10):. PubMed ID: 34683277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Research on error control and compensation in magnetorheological finishing.
    Dai Y; Hu H; Peng X; Wang J; Shi F
    Appl Opt; 2011 Jul; 50(19):3321-9. PubMed ID: 21743536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Cause of Ribbon Fluctuation in Magnetorheological Finishing and Its Influence on Surface Mid-Spatial Frequency Error.
    Wang B; Shi F; Tie G; Zhang W; Song C; Tian Y; Shen Y
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nano-Precision Processing of NiP Coating by Magnetorheological Finishing.
    Xu C; Peng X; Hu H; Liu J; Li H; Luo T; Lai T
    Nanomaterials (Basel); 2023 Jul; 13(14):. PubMed ID: 37513129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development analysis of magnetorheological precession finishing (MRPF) technology.
    Liu J; He J; Peng Y
    Opt Express; 2023 Dec; 31(26):43535-43549. PubMed ID: 38178447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deterministic ion beam material adding technology for high-precision optical surfaces.
    Liao W; Dai Y; Xie X; Zhou L
    Appl Opt; 2013 Feb; 52(6):1302-9. PubMed ID: 23435003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imprinting high-gradient topographical structures onto optical surfaces using magnetorheological finishing: manufacturing corrective optical elements for high-power laser applications.
    Menapace JA; Ehrmann PE; Bayramian AJ; Bullington A; Di Nicola JM; Haefner C; Jarboe J; Marshall C; Schaffers KI; Smith C
    Appl Opt; 2016 Jul; 55(19):5240-8. PubMed ID: 27409216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurately predicting the tool influence function to achieve high-precision magnetorheological finishing using robots.
    Cheng R; Li L; Xue D; Li X; Bai Y; Luo X; Zhang X
    Opt Express; 2023 Oct; 31(21):34917-34936. PubMed ID: 37859236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model of the material removal function and an experimental study on a magnetorheological finishing process using a small ball-end permanent-magnet polishing head.
    Chen M; Liu H; Cheng J; Yu B; Fang Z
    Appl Opt; 2017 Jul; 56(19):5573-5582. PubMed ID: 29047518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Method for Optimizing the Dwell Time of Optical Components in Magnetorheological Finishing Based on Particle Swarm Optimization.
    Gao B; Fan B; Wang J; Wu X; Xin Q
    Micromachines (Basel); 2023 Dec; 15(1):. PubMed ID: 38276846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution mechanism of scratch removal based on the implementation of magnetorheological finishing.
    Li Y; Li L; Li X; Cheng R; Wei H; Liu X; Wang Y; Zhang X
    Opt Express; 2024 Mar; 32(7):11241-11258. PubMed ID: 38570976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of temperature on the removal efficiency of KDP crystal during the process of magnetorheological water-dissolution polishing.
    Zhang Y; Dai Y; Tie G; Hu H
    Appl Opt; 2016 Oct; 55(29):8308-8315. PubMed ID: 27828080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of surface roughness and the material removal rate in magnetorheological finishing.
    Lin Z; Hu H; Dai Y; Yaoyu Z; Xue S
    Opt Express; 2022 Dec; 30(26):46157-46169. PubMed ID: 36558577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the convergence rules of full-range PSD surface error of magnetorheological figuring KDP crystal.
    Chen S; He D; Wu Y; Chen H; Zhang Z; Chen Y
    Appl Opt; 2016 Oct; 55(28):8056-8062. PubMed ID: 27828045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Research on the tool influence function characteristics of magnetorheological precession finishing (MRPF).
    Liu J; Huang P; Peng Y
    Opt Express; 2024 Mar; 32(7):12537-12550. PubMed ID: 38571074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calibration and prediction of removal function in magnetorheological finishing.
    Dai Y; Song C; Peng X; Shi F
    Appl Opt; 2010 Jan; 49(3):298-306. PubMed ID: 20090792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Belt-MRF for large aperture mirrors.
    Ren K; Luo X; Zheng L; Bai Y; Li L; Hu H; Zhang X
    Opt Express; 2014 Aug; 22(16):19262-76. PubMed ID: 25321011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.