These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38859144)

  • 1. Inverse optical scatterometry using sketch-guided deep learning.
    Liu S; Chen X; Yang T; Zhang J; Liu S
    Opt Express; 2024 May; 32(11):20303-20315. PubMed ID: 38859144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstruction of a complex profile shape by weighting basic characterization results for nanometrology.
    Godi Tchéré M; Robert S; Fawzi ZS; Bayard B
    Appl Opt; 2019 Aug; 58(22):6118-6125. PubMed ID: 31503938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maximum contributed component regression for the inverse problem in optical scatterometry.
    Zhu H; Lee Y; Shan H; Zhang J
    Opt Express; 2017 Jul; 25(14):15956-15966. PubMed ID: 28789106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly robust reconstruction framework for three-dimensional optical imaging based on physical model constrained neural networks.
    Chen X; Meng Y; Wang L; Zhou W; Chen D; Xie H; Ren S
    Phys Med Biol; 2024 Mar; 69(7):. PubMed ID: 38394682
    [No Abstract]   [Full Text] [Related]  

  • 5. Application of measurement configuration optimization for accurate metrology of sub-wavelength dimensions in multilayer gratings using optical scatterometry.
    Zhu J; Shi Y; Goddard LL; Liu S
    Appl Opt; 2016 Sep; 55(25):6844-9. PubMed ID: 27607258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical singularity assisted method for accurate parameter detection of step-shaped nanostructure in coherent Fourier scatterometry.
    Dou X; Min C; Zhang Y; Pereira SF; Yuan X
    Opt Express; 2022 Aug; 30(16):29287-29294. PubMed ID: 36299106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved measurement accuracy in optical scatterometry using correction-based library search.
    Chen X; Liu S; Zhang C; Jiang H
    Appl Opt; 2013 Sep; 52(27):6726-34. PubMed ID: 24085171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning in optical metrology: a review.
    Zuo C; Qian J; Feng S; Yin W; Li Y; Fan P; Han J; Qian K; Chen Q
    Light Sci Appl; 2022 Feb; 11(1):39. PubMed ID: 35197457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recognition of diffraction-grating profile using a neural network classifier in optical scatterometry.
    Gereige I; Robert S; Thiria S; Badran F; Granet G; Rousseau JJ
    J Opt Soc Am A Opt Image Sci Vis; 2008 Jul; 25(7):1661-7. PubMed ID: 18594623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic feature selection in EUV scatterometry.
    Ansuinelli P; Coene WMJ; Urbach HP
    Appl Opt; 2019 Aug; 58(22):5916-5923. PubMed ID: 31503906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved grating reconstruction by determination of line roughness in extreme ultraviolet scatterometry.
    Henn MA; Heidenreich S; Gross H; Rathsfeld A; Scholze F; Bär M
    Opt Lett; 2012 Dec; 37(24):5229-31. PubMed ID: 23258061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A maximum likelihood approach to the inverse problem of scatterometry.
    Henn MA; Gross H; Scholze F; Wurm M; Elster C; Bär M
    Opt Express; 2012 Jun; 20(12):12771-86. PubMed ID: 22714306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated Plasmonic Resonance Scattering Imaging Analysis via Deep Learning.
    Song MK; Chen SX; Hu PP; Huang CZ; Zhou J
    Anal Chem; 2021 Feb; 93(4):2619-2626. PubMed ID: 33427440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstruction of sub-wavelength features and nano-positioning of gratings using coherent Fourier scatterometry.
    Kumar N; Petrik P; Ramanandan GK; El Gawhary O; Roy S; Pereira SF; Coene WM; Urbach HP
    Opt Express; 2014 Oct; 22(20):24678-88. PubMed ID: 25322042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Error analysis in inverse scatterometry. I. Modeling.
    Al-Assaad RM; Byrne DM
    J Opt Soc Am A Opt Image Sci Vis; 2007 Feb; 24(2):326-38. PubMed ID: 17206249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-and-frequency domains approach to data processing in multiwavelength optical scatterometry of dielectric gratings.
    Granet G; Melezhik P; Sirenko K; Yashina N
    J Opt Soc Am A Opt Image Sci Vis; 2013 Mar; 30(3):427-36. PubMed ID: 23456118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust solution to the inverse problem in optical scatterometry.
    Zhu J; Liu S; Chen X; Zhang C; Jiang H
    Opt Express; 2014 Sep; 22(18):22031-42. PubMed ID: 25321577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hyperspectral imaging for high-throughput, spatially resolved spectroscopic scatterometry of silicon nanopillar arrays.
    Gawlik B; Barrera C; Yu ET; Sreenivasan SV
    Opt Express; 2020 May; 28(10):14209-14221. PubMed ID: 32403464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep convolutional neural network and IoT technology for healthcare.
    Wassan S; Dongyan H; Suhail B; Jhanjhi NZ; Xiao G; Ahmed S; Murugesan RK
    Digit Health; 2024; 10():20552076231220123. PubMed ID: 38250147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A unique physics-inspired deep-learning-based platform introducing a generalized tool for rapid optical-response prediction and parametric-optimization for all-dielectric metasurfaces.
    Noureen S; Mehmood MQ; Ali M; Rehman B; Zubair M; Massoud Y
    Nanoscale; 2022 Nov; 14(44):16436-16449. PubMed ID: 36326120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.