These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38859187)

  • 1. Multi-line-of-sight Hartmann-Shack wavefront sensing based on image segmentation and K-means sorting.
    Zhang Y; Gao Z; Jin R; Zhao W; Zhu L; Ye H; Zhang Y; Yang P; Wang S
    Opt Express; 2024 Apr; 32(9):15336-15357. PubMed ID: 38859187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shack-Hartmann wavefront sensing based on binary-aberration-mode filtering.
    Wang S; Yang P; Xu B; Dong L; Ao M
    Opt Express; 2015 Feb; 23(4):5052-64. PubMed ID: 25836540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tomographic wavefront error using multi-LGS constellation sensed with Shack-Hartmann wavefront sensors.
    Robert C; Conan JM; Gratadour D; Schreiber L; Fusco T
    J Opt Soc Am A Opt Image Sci Vis; 2010 Nov; 27(11):A201-15. PubMed ID: 21045881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Method Used to Improve the Dynamic Range of Shack-Hartmann Wavefront Sensor in Presence of Large Aberration.
    Yang W; Wang J; Wang B
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atmospheric Turbulence Aberration Correction Based on Deep Learning Wavefront Sensing.
    You J; Gu J; Du Y; Wan M; Xie C; Xiang Z
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of a global algorithm for wavefront reconstruction for Shack-Hartmann wave-front sensors and thick fundus reflectors.
    Liu T; Thibos L; Marin G; Hernandez M
    Ophthalmic Physiol Opt; 2014 Jan; 34(1):63-72. PubMed ID: 24325435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning wavefront sensing method for Shack-Hartmann sensors with sparse sub-apertures.
    He Y; Liu Z; Ning Y; Li J; Xu X; Jiang Z
    Opt Express; 2021 May; 29(11):17669-17682. PubMed ID: 34154303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring the centroid gain of a Shack-Hartmann quad-cell wavefront sensor by using slope discrepancy.
    van Dam MA
    J Opt Soc Am A Opt Image Sci Vis; 2005 Aug; 22(8):1509-14. PubMed ID: 16134845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental detection of optical vortices with a Shack-Hartmann wavefront sensor.
    Murphy K; Burke D; Devaney N; Dainty C
    Opt Express; 2010 Jul; 18(15):15448-60. PubMed ID: 20720924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning-based Shack-Hartmann wavefront sensor for high-order aberration detection.
    Hu L; Hu S; Gong W; Si K
    Opt Express; 2019 Nov; 27(23):33504-33517. PubMed ID: 31878418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive optics system for a short wavelength mid-IR laser based on a Shack-Hartmann wavefront sensor and analysis of thermal noise impacts.
    Zhou H; Pilar J; Smrz M; Chen L; Čech M; Mocek T
    Appl Opt; 2022 Sep; 61(27):7958-7965. PubMed ID: 36255916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correction of aberration in holographic optical tweezers using a Shack-Hartmann sensor.
    López-Quesada C; Andilla J; Martín-Badosa E
    Appl Opt; 2009 Feb; 48(6):1084-90. PubMed ID: 23567567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Convolutional neural network for improved event-based Shack-Hartmann wavefront reconstruction.
    Grose M; Schmidt JD; Hirakawa K
    Appl Opt; 2024 Jun; 63(16):E35-E47. PubMed ID: 38856590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive thresholding and dynamic windowing method for automatic centroid detection of digital Shack-Hartmann wavefront sensor.
    Yin X; Li X; Zhao L; Fang Z
    Appl Opt; 2009 Nov; 48(32):6088-98. PubMed ID: 19904304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the plenoptic sensor and the Shack-Hartmann sensor.
    Ko J; Davis CC
    Appl Opt; 2017 May; 56(13):3689-3698. PubMed ID: 28463253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptable Shack-Hartmann wavefront sensor with diffractive lenslet arrays to mitigate the effects of scintillation.
    Lechner D; Zepp A; Eichhorn M; Gładysz S
    Opt Express; 2020 Nov; 28(24):36188-36205. PubMed ID: 33379719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient implementation of the Shack-Hartmann centroid extraction for edge computing.
    Mocci J; Busato F; Bombieri N; Bonora S; Muradore R
    J Opt Soc Am A Opt Image Sci Vis; 2020 Oct; 37(10):1548-1556. PubMed ID: 33104604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shack-Hartmann wavefront sensor with large dynamic range.
    Xia M; Li C; Hu L; Cao Z; Mu Q; Xuan L
    J Biomed Opt; 2010; 15(2):026009. PubMed ID: 20459254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wavefront correction algorithm based on a complete second-order DM-SHWS model for free-space optical communications.
    Yu W; Zhong J; Chen G; Mao H; Yang H; Zhong Y
    Appl Opt; 2021 Jun; 60(16):4954-4963. PubMed ID: 34143058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laboratory study of aberration calculation in underwater turbulence using Shack-Hartmann wavefront sensor and Zernike polynomials.
    Aghajani A; Kashani FD; Yousefi M
    Opt Express; 2024 Apr; 32(9):15978-15992. PubMed ID: 38859236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.