These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38859265)

  • 1. Programmable photoacoustic manipulation of microparticles in liquid.
    Li J; Zhao X; Zhang R; Zhou D; Li F; Li Z; Guo H
    Opt Express; 2024 Apr; 32(9):16362-16370. PubMed ID: 38859265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Programmable spin and transport of a living shrimp egg through photoacoustic pressure.
    Zhao X; Zhang R; Li J; Zhou D; Li F; Guo H
    Opt Lett; 2024 May; 49(9):2341-2344. PubMed ID: 38691714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Programmable photoacoustic patterning of microparticles in air.
    Zhang R; Zhao X; Li J; Zhou D; Guo H; Li ZY; Li F
    Nat Commun; 2024 Apr; 15(1):3250. PubMed ID: 38627385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ring-shaped photoacoustic tweezers for single particle manipulation.
    Zhao Z; Xia J; Huang TJ; Zou J
    Opt Lett; 2022 Feb; 47(4):826-829. PubMed ID: 35167535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bisymmetric coherent acoustic tweezers based on modulation of surface acoustic waves for dynamic and reconfigurable cluster manipulation of particles and cells.
    Pan H; Mei D; Xu C; Han S; Wang Y
    Lab Chip; 2023 Jan; 23(2):215-228. PubMed ID: 36420975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Programmable motion control and trajectory manipulation of microparticles through tri-directional symmetrical acoustic tweezers.
    Wang Y; Pan H; Mei D; Xu C; Weng W
    Lab Chip; 2022 Mar; 22(6):1149-1161. PubMed ID: 35134105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional manipulation of single cells using surface acoustic waves.
    Guo F; Mao Z; Chen Y; Xie Z; Lata JP; Li P; Ren L; Liu J; Yang J; Dao M; Suresh S; Huang TJ
    Proc Natl Acad Sci U S A; 2016 Feb; 113(6):1522-7. PubMed ID: 26811444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves.
    Ding X; Lin SC; Kiraly B; Yue H; Li S; Chiang IK; Shi J; Benkovic SJ; Huang TJ
    Proc Natl Acad Sci U S A; 2012 Jul; 109(28):11105-9. PubMed ID: 22733731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optothermal Manipulations of Colloidal Particles and Living Cells.
    Lin L; Hill EH; Peng X; Zheng Y
    Acc Chem Res; 2018 Jun; 51(6):1465-1474. PubMed ID: 29799720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wave number-spiral acoustic tweezers for dynamic and reconfigurable manipulation of particles and cells.
    Tian Z; Yang S; Huang PH; Wang Z; Zhang P; Gu Y; Bachman H; Chen C; Wu M; Xie Y; Huang TJ
    Sci Adv; 2019 May; 5(5):eaau6062. PubMed ID: 31172021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustic tweezers using bisymmetric coherent surface acoustic waves for dynamic and reconfigurable manipulation of particle multimers.
    Pan H; Mei D; Xu C; Li X; Wang Y
    J Colloid Interface Sci; 2023 Aug; 643():115-123. PubMed ID: 37058887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local Acoustic Fields Powered Assembly of Microparticles and Applications.
    Shen H; Zhao K; Wang Z; Xu X; Lu J; Liu W; Lu X
    Micromachines (Basel); 2019 Dec; 10(12):. PubMed ID: 31888215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.
    Simmons CS; Knouf EC; Tewari M; Lin LY
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concentration of Microparticles Using Flexural Acoustic Wave in Sessile Droplets.
    Peng T; Li L; Zhou M; Jiang F
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35162014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capillary wave tweezer.
    Orme B; Torun H; Unthank M; Fu YQ; Ford B; Agrawal P
    Sci Rep; 2024 May; 14(1):12448. PubMed ID: 38816398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-vivo programmable acoustic manipulation of genetically engineered bacteria.
    Yang Y; Yang Y; Liu D; Wang Y; Lu M; Zhang Q; Huang J; Li Y; Ma T; Yan F; Zheng H
    Nat Commun; 2023 Jun; 14(1):3297. PubMed ID: 37280199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micro-Acoustic-Trap (µAT) for microparticle assembly in 3D.
    Vyas V; Lemieux M; Knecht DA; Kolosov OV; Huey BD
    Ultrason Sonochem; 2019 Oct; 57():193-202. PubMed ID: 31208614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-throughput and directed microparticle manipulation in complex-shaped maze chambers based on travelling surface acoustic waves.
    Weng W; Pan H; Wang Y
    Analyst; 2022 Nov; 147(22):4962-4970. PubMed ID: 36255404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous Particle Aggregation and Separation in Acoustofluidic Microchannels Driven by Standing Lamb Waves.
    Hsu JC; Chang CY
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Massively parallel manipulation of single cells and microparticles using optical images.
    Chiou PY; Ohta AT; Wu MC
    Nature; 2005 Jul; 436(7049):370-2. PubMed ID: 16034413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.