These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38859280)

  • 1. Optical spatial differentiation enabled layer sensing of two-dimensional atomic crystals.
    Zhang J; Wu H; Huang M; Dai X; Zhang T; Li Y; Yu X
    Opt Express; 2024 Apr; 32(9):16563-16577. PubMed ID: 38859280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrically tunable optical spatial differentiation with graphene.
    Xia D; Yang J; Zhi Q
    Opt Express; 2023 Aug; 31(17):27312-27323. PubMed ID: 37710810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An edge-readout, multilayer detector for positron emission tomography.
    Li X; Ruiz-Gonzalez M; Furenlid LR
    Med Phys; 2018 Jun; 45(6):2425-2438. PubMed ID: 29635734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable optical differential operation based on graphene at a telecommunication wavelength.
    Xu J; Yi Q; He M; Peng Y; Liu E; Liu Y
    Opt Express; 2023 Sep; 31(19):30402-30412. PubMed ID: 37710582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Examining the optical model of graphene via the photonic spin Hall effect.
    Wu Y; Liu S; Chen S; Luo H; Wen S
    Opt Lett; 2022 Feb; 47(4):846-849. PubMed ID: 35167540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polycrystallinity and stacking in CVD graphene.
    Tsen AW; Brown L; Havener RW; Park J
    Acc Chem Res; 2013 Oct; 46(10):2286-96. PubMed ID: 23135386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging layer thickness of large-area graphene using reference-aided optical differential reflection technique.
    Hu C; Wang H; Shen Y; Huo S; Shen W; Hu X; Hu X
    Opt Lett; 2020 Aug; 45(15):4136-4139. PubMed ID: 32735242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable optical differential operation based on the cross-polarization effect at the optical interface.
    Xia D; Wang Y; Zhi Q
    Opt Express; 2021 Sep; 29(20):31891-31901. PubMed ID: 34615271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precise identification of graphene layers at the air-prism interface via a pseudo-Brewster angle.
    Mi C; Chen S; Wu W; Zhang W; Zhou X; Ling X; Shu W; Luo H; Wen S
    Opt Lett; 2017 Oct; 42(20):4135-4138. PubMed ID: 29028031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defect mode tunability based on the electro-optical characteristics of the one-dimensional graphene photonic crystals.
    Aly AH; Sayed FA; Elsayed HA
    Appl Opt; 2020 Jun; 59(16):4796-4805. PubMed ID: 32543472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene-based low-threshold and tunable optical bistability in one-dimensional photonic crystal Fano resonance heterostructure at optical communication band.
    Peng Y; Xu J; Dong H; Dai X; Jiang J; Qian S; Jiang L
    Opt Express; 2020 Nov; 28(23):34948-34959. PubMed ID: 33182952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate thickness measurement of graphene.
    Shearer CJ; Slattery AD; Stapleton AJ; Shapter JG; Gibson CT
    Nanotechnology; 2016 Mar; 27(12):125704. PubMed ID: 26894444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical reflection and transmission properties of exfoliated graphite from a graphene monolayer to several hundred graphene layers.
    Skulason HS; Gaskell PE; Szkopek T
    Nanotechnology; 2010 Jul; 21(29):295709. PubMed ID: 20601758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and Imaging of Monolayer Phosphorene with Preferred Edge Configurations via Graphene-Assisted Layer-by-Layer Thinning.
    Lee Y; Lee S; Yoon JY; Cheon J; Jeong HY; Kim K
    Nano Lett; 2020 Jan; 20(1):559-566. PubMed ID: 31790269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate-Selective Morphology of Cesium Iodide Clusters on Graphene.
    Vats N; Wang Y; Sen S; Szilagyi S; Ochner H; Abb S; Burghard M; Sigle W; Kern K; van Aken PA; Rauschenbach S
    ACS Nano; 2020 Apr; 14(4):4626-4635. PubMed ID: 32283013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of the number of graphene layers on the atomic resolution images obtained from aberration-corrected high resolution transmission electron microscopy.
    Warner JH
    Nanotechnology; 2010 Jun; 21(25):255707. PubMed ID: 20516582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Confocal laser scanning microscopy for rapid optical characterization of graphene.
    Panchal V; Yang Y; Cheng G; Hu J; Kruskopf M; Liu CI; Rigosi AF; Melios C; Hight Walker AR; Newell DB; Kazakova O; Elmquist RE
    Commun Phys; 2018; 1():. PubMed ID: 31093580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complex refractive index measurement for atomic-layer materials via surface plasmon resonance holographic microscopy.
    Dai S; Lu H; Zhang J; Shi Y; Dou J; Di J; Zhao J
    Opt Lett; 2019 Jun; 44(12):2982-2985. PubMed ID: 31199361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Athermally photoreduced graphene oxides for three-dimensional holographic images.
    Li X; Ren H; Chen X; Liu J; Li Q; Li C; Xue G; Jia J; Cao L; Sahu A; Hu B; Wang Y; Jin G; Gu M
    Nat Commun; 2015 Apr; 6():6984. PubMed ID: 25901676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.