BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38859385)

  • 1. Vision transformer empowered physics-driven deep learning for omnidirectional three-dimensional holography.
    Jin Z; Ren Q; Chen T; Dai Z; Shu F; Fang B; Hong Z; Shen C; Mei S
    Opt Express; 2024 Apr; 32(8):14394-14404. PubMed ID: 38859385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive deep learning model for 3D color holography.
    Yolalmaz A; Yüce E
    Sci Rep; 2022 Feb; 12(1):2487. PubMed ID: 35169161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards real-time photorealistic 3D holography with deep neural networks.
    Shi L; Li B; Kim C; Kellnhofer P; Matusik W
    Nature; 2021 Mar; 591(7849):234-239. PubMed ID: 33692557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hologram classification of occluded and deformable objects with speckle noise contamination by deep learning.
    Lam HHS; Tsang PWM; Poon TC
    J Opt Soc Am A Opt Image Sci Vis; 2022 Mar; 39(3):411-417. PubMed ID: 35297424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-contrast, speckle-free, true 3D holography via binary CGH optimization.
    Lee B; Kim D; Lee S; Chen C; Lee B
    Sci Rep; 2022 Feb; 12(1):2811. PubMed ID: 35181695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reducing crosstalk of a multi-plane holographic display by the time-multiplexing stochastic gradient descent.
    Wang Z; Chen T; Chen Q; Tu K; Feng Q; Lv G; Wang A; Ming H
    Opt Express; 2023 Feb; 31(5):7413-7424. PubMed ID: 36859872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breaking crosstalk limits to dynamic holography using orthogonality of high-dimensional random vectors.
    Makey G; Yavuz Ö; Kesim DK; Turnalı A; Elahi P; Ilday S; Tokel O; Ilday FÖ
    Nat Photonics; 2019 Apr; 13(4):251-256. PubMed ID: 30930957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. End-to-end learning of 3D phase-only holograms for holographic display.
    Shi L; Li B; Matusik W
    Light Sci Appl; 2022 Aug; 11(1):247. PubMed ID: 35922407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Speckle-suppression in hologram calculation using ray-sampling plane.
    Utsugi T; Yamaguchi M
    Opt Express; 2014 Jul; 22(14):17193-206. PubMed ID: 25090533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liquid lens based holographic camera for real 3D scene hologram acquisition using end-to-end physical model-driven network.
    Wang D; Li ZS; Zheng Y; Zhao YR; Liu C; Xu JB; Zheng YW; Huang Q; Chang CL; Zhang DW; Zhuang SL; Wang QH
    Light Sci Appl; 2024 Feb; 13(1):62. PubMed ID: 38424072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DH-GAN: a physics-driven untrained generative adversarial network for holographic imaging.
    Chen X; Wang H; Razi A; Kozicki M; Mann C
    Opt Express; 2023 Mar; 31(6):10114-10135. PubMed ID: 37157567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-frequency acoustic hologram generation with a physics-enhanced deep neural network.
    Lin Q; Zhang R; Cai F; Chen Y; Ye J; Wang J; Zheng H; Zhang H
    Ultrasonics; 2023 Jul; 132():106970. PubMed ID: 36898297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional angle multiplexing by segmented spherical holography.
    Liu CJ; Jin FM; Wu Y; Wang J; Chen C
    Appl Opt; 2021 Jan; 60(1):155-161. PubMed ID: 33362085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bright-field holography: cross-modality deep learning enables snapshot 3D imaging with bright-field contrast using a single hologram.
    Wu Y; Luo Y; Chaudhari G; Rivenson Y; Calis A; de Haan K; Ozcan A
    Light Sci Appl; 2019; 8():25. PubMed ID: 30854197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast autofocusing using tiny transformer networks for digital holographic microscopy.
    Cuenat S; Andréoli L; André AN; Sandoz P; Laurent GJ; Couturier R; Jacquot M
    Opt Express; 2022 Jul; 30(14):24730-24746. PubMed ID: 36237020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classification of Holograms with 3D-CNN.
    Terbe D; Orzó L; Zarándy Á
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36366064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large field-of-view holographic display by gapless splicing of multisegment cylindrical holograms.
    Ma Y; Wang J; Wu Y; Jin F; Zhang Z; Zhou Z; Chen N
    Appl Opt; 2021 Aug; 60(24):7381-7390. PubMed ID: 34613027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning-based incoherent holographic camera enabling acquisition of real-world holograms for holographic streaming system.
    Yu H; Kim Y; Yang D; Seo W; Kim Y; Hong JY; Song H; Sung G; Sung Y; Min SW; Lee HS
    Nat Commun; 2023 Jun; 14(1):3534. PubMed ID: 37316495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-speed computer-generated holography using an autoencoder-based deep neural network.
    Wu J; Liu K; Sui X; Cao L
    Opt Lett; 2021 Jun; 46(12):2908-2911. PubMed ID: 34129571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffraction model-informed neural network for unsupervised layer-based computer-generated holography.
    Shui X; Zheng H; Xia X; Yang F; Wang W; Yu Y
    Opt Express; 2022 Dec; 30(25):44814-44826. PubMed ID: 36522896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.