These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 38859536)

  • 21. Shifting the spherical focus of a 4Pi focusing system.
    Yan S; Yao B; Rupp R
    Opt Express; 2011 Jan; 19(2):673-8. PubMed ID: 21263606
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Radiation force on a nonlinear microsphere by a tightly focused Gaussian beam.
    Pobre R; Saloma C
    Appl Opt; 2002 Dec; 41(36):7694-701. PubMed ID: 12510940
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Study of the focused laser spots generated by various polarized laser beam conditions.
    Fu YH; Ho FH; Lin WC; Liu WC; Tsai DP
    J Microsc; 2003 Jun; 210(Pt 3):225-8. PubMed ID: 12787089
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Scattering of a radially polarized Bessel beam by a PEMC sphere: photonic nanojet and bottle beam formation.
    Tang H; Shi Z; Zhang Y; Li R; Wei B; Gong S; He X; Yang L; Yan B; Sun H; Mitri FG
    Appl Opt; 2023 Dec; 62(34):9164-9174. PubMed ID: 38108755
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of tightly focused vector fields formed by off-axis parabolic mirror.
    Zeng X; Chen X
    Opt Express; 2019 Jan; 27(2):1179-1198. PubMed ID: 30696188
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of spherical aberration on the tightly focusing characteristics of vector vortex beams.
    Wang Y; Yong K; Chen D; Zhang R
    Opt Express; 2023 Aug; 31(17):28229-28240. PubMed ID: 37710882
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electromagnetic field for a beam incident on two adjacent spherical particles.
    Barton JP; Ma W; Schaub SA; Alexander DR
    Appl Opt; 1991 Nov; 30(33):4706-15. PubMed ID: 20717273
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Light intensification towards the Schwinger limit.
    Bulanov SV; Esirkepov T; Tajima T
    Phys Rev Lett; 2003 Aug; 91(8):085001. PubMed ID: 14525245
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Scattering-induced changes in the degree of polarization of a stochastic electromagnetic plane-wave pulse.
    Ding C; Cai Y; Zhang Y; Pan L
    J Opt Soc Am A Opt Image Sci Vis; 2012 Jun; 29(6):1078-90. PubMed ID: 22673439
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Temporally Resolved Intensity Contouring (TRIC) for characterization of the absolute spatio-temporal intensity distribution of a relativistic, femtosecond laser pulse.
    Haffa D; Bin J; Speicher M; Allinger K; Hartmann J; Kreuzer C; Ridente E; Ostermayr TM; Schreiber J
    Sci Rep; 2019 May; 9(1):7697. PubMed ID: 31118430
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Calibration of a focusing transducer and miniature hydrophone as well as acoustic power measurement based on free-field reciprocity in a spherically focused wave field.
    Shou W; Duan S; He P; Xia R; Qian D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Mar; 53(3):564-70. PubMed ID: 16555764
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coherent focusing of high harmonics: a new way towards the extreme intensities.
    Gordienko S; Pukhov A; Shorokhov O; Baeva T
    Phys Rev Lett; 2005 Mar; 94(10):103903. PubMed ID: 15783488
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lowered threshold energy for femtosecond laser induced optical breakdown in a water based eye model by aberration correction with adaptive optics.
    Hansen A; Géneaux R; Günther A; Krüger A; Ripken T
    Biomed Opt Express; 2013 Jun; 4(6):852-67. PubMed ID: 23761849
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gegenbauer expansion to model the incident wave-field of a high-order Bessel vortex beam in spherical coordinates.
    Mitri FG
    Ultrasonics; 2010 May; 50(6):541-3. PubMed ID: 20167344
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gigahertz electromagnetic pulse emission from femtosecond relativistic laser-irradiated solid targets.
    Qi R; Zhou C; Zheng Z; Zhang D; Yang X; Gui J; Song L; Tian Y; Li R
    Opt Express; 2024 Jan; 32(2):2670-2678. PubMed ID: 38297790
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Radiation torque on a spherical birefringent particle in the long wave length limit: analytical calculation.
    Ji N; Liu M; Zhou J; Lin Z; Chui S
    Opt Express; 2005 Jul; 13(14):5192-204. PubMed ID: 19498510
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integration of the Lorentz-Dirac equation: Interaction of an intense laser pulse with high-energy electrons.
    Koga J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046502. PubMed ID: 15600540
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optical analysis of human eye using electromagnetic wave theory.
    Can MG; Oner BB; Kurt H
    J Biomed Opt; 2013 Oct; 18(10):105006. PubMed ID: 24129391
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Relativistic Acceleration of Electrons Injected by a Plasma Mirror into a Radially Polarized Laser Beam.
    Zaïm N; Thévenet M; Lifschitz A; Faure J
    Phys Rev Lett; 2017 Sep; 119(9):094801. PubMed ID: 28949590
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impact of primary spherical aberration, spatial frequency and Stiles Crawford apodization on wavefront determined refractive error: a computational study.
    Xu R; Bradley A; Thibos LN
    Ophthalmic Physiol Opt; 2013 Jul; 33(4):444-55. PubMed ID: 23683093
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.