BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38859561)

  • 1. Genome-wide mapping of DNase I hypersensitive sites revealed differential chromatin accessibility and regulatory DNA elements under drought stress in rice cultivars.
    Rajkumar MS; Tembhare K; Garg R; Jain M
    Plant J; 2024 Jun; ():. PubMed ID: 38859561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide mapping of DNase I hypersensitive sites in pineapple leaves.
    Ouyang K; Liang Q; Miao L; Zhang Z; Li Z
    Front Genet; 2023; 14():1086554. PubMed ID: 37470036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide discovery of genetic variations between rice cultivars with contrasting drought stress response and their potential functional relevance.
    Shankar R; Dwivedi AK; Singh V; Jain M
    Physiol Plant; 2023 Mar; 175(2):e13879. PubMed ID: 36805564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-scale identification of Caenorhabditis elegans regulatory elements by tiling-array mapping of DNase I hypersensitive sites.
    Shi B; Guo X; Wu T; Sheng S; Wang J; Skogerbø G; Zhu X; Chen R
    BMC Genomics; 2009 Feb; 10():92. PubMed ID: 19243610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unveiling the gene regulatory landscape in diseases through the identification of DNase I-hypersensitive sites.
    Chen Y; Chen A
    Biomed Rep; 2019 Sep; 11(3):87-97. PubMed ID: 31423302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-Wide Identification of Regulatory DNA Elements in Crop Plants.
    Li Z; Wang K
    Methods Mol Biol; 2020; 2072():85-99. PubMed ID: 31541440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the relationship between intron retention and chromatin accessibility in plants.
    Ullah F; Hamilton M; Reddy ASN; Ben-Hur A
    BMC Genomics; 2018 Jan; 19(1):21. PubMed ID: 29304739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide DNase I-hypersensitive site assay reveals distinct genomic distributions and functional features of open chromatin in autopolyploid sugarcane.
    Yu G; Sun B; Zhu Z; Mehareb EM; Teng A; Han J; Zhang H; Liu J; Liu X; Raza G; Zhang B; Zhang Y; Wang K
    Plant J; 2024 Jan; 117(2):573-589. PubMed ID: 37897092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Five novel transcription factors as potential regulators of OsNHX1 gene expression in a salt tolerant rice genotype.
    Almeida DM; Gregorio GB; Oliveira MM; Saibo NJ
    Plant Mol Biol; 2017 Jan; 93(1-2):61-77. PubMed ID: 27766460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. qDTY₁.₁, a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds.
    Vikram P; Swamy BP; Dixit S; Ahmed HU; Teresa Sta Cruz M; Singh AK; Kumar A
    BMC Genet; 2011 Oct; 12():89. PubMed ID: 22008150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pDHS-SVM: A prediction method for plant DNase I hypersensitive sites based on support vector machine.
    Zhang S; Zhou Z; Chen X; Hu Y; Yang L
    J Theor Biol; 2017 Aug; 426():126-133. PubMed ID: 28552554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of cis-regulatory elements associated with salinity and drought stress tolerance in rice from co-expressed gene interaction networks.
    Mishra P; Singh N; Jain A; Jain N; Mishra V; G P; Sandhya KP; Singh NK; Rai V
    Bioinformation; 2018; 14(3):123-131. PubMed ID: 29785071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-Wide Characterization of DNase I-Hypersensitive Sites and Cold Response Regulatory Landscapes in Grasses.
    Han J; Wang P; Wang Q; Lin Q; Chen Z; Yu G; Miao C; Dao Y; Wu R; Schnable JC; Tang H; Wang K
    Plant Cell; 2020 Aug; 32(8):2457-2473. PubMed ID: 32471863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-Wide Mapping of DNase I Hypersensitive Sites in Tomato.
    Li R; Cui X
    Methods Mol Biol; 2018; 1830():367-379. PubMed ID: 30043382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide mapping of DNase I hypersensitive sites and association analysis with gene expression in MSB1 cells.
    He Y; Carrillo JA; Luo J; Ding Y; Tian F; Davidson I; Song J
    Front Genet; 2014; 5():308. PubMed ID: 25352859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative analysis of drought-responsive transcriptome in Indica rice genotypes with contrasting drought tolerance.
    Lenka SK; Katiyar A; Chinnusamy V; Bansal KC
    Plant Biotechnol J; 2011 Apr; 9(3):315-27. PubMed ID: 20809928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cold stress induces enhanced chromatin accessibility and bivalent histone modifications H3K4me3 and H3K27me3 of active genes in potato.
    Zeng Z; Zhang W; Marand AP; Zhu B; Buell CR; Jiang J
    Genome Biol; 2019 Jun; 20(1):123. PubMed ID: 31208436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide chromatin accessibility landscape and dynamics of transcription factor networks during ovule and fiber development in cotton.
    Bao Y; Wei Y; Liu Y; Gao J; Cheng S; Liu G; You Q; Liu P; Lu Q; Li P; Zhang S; Hu N; Han Y; Liu S; Wu Y; Yang Q; Li Z; Ao G; Liu F; Wang K; Jiang J; Zhang T; Zhang W; Peng R
    BMC Biol; 2023 Jul; 21(1):165. PubMed ID: 37525156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide detection of DNase I hypersensitive sites in single cells and FFPE tissue samples.
    Jin W; Tang Q; Wan M; Cui K; Zhang Y; Ren G; Ni B; Sklar J; Przytycka TM; Childs R; Levens D; Zhao K
    Nature; 2015 Dec; 528(7580):142-6. PubMed ID: 26605532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNase I hypersensitivity analysis of the mouse brain and retina identifies region-specific regulatory elements.
    Wilken MS; Brzezinski JA; La Torre A; Siebenthall K; Thurman R; Sabo P; Sandstrom RS; Vierstra J; Canfield TK; Hansen RS; Bender MA; Stamatoyannopoulos J; Reh TA
    Epigenetics Chromatin; 2015; 8():8. PubMed ID: 25972927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.