These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 38859584)

  • 1. Biophysics of claudin proteins in tight junction architecture: Three decades of progress.
    Marsch P; Rajagopal N; Nangia S
    Biophys J; 2024 Aug; 123(16):2363-2378. PubMed ID: 38859584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assembly of Tight Junction Strands: Claudin-10b and Claudin-3 Form Homo-Tetrameric Building Blocks that Polymerise in a Channel-Independent Manner.
    Hempel C; Protze J; Altun E; Riebe B; Piontek A; Fromm A; Lee IM; Saleh T; Günzel D; Krause G; Piontek J
    J Mol Biol; 2020 Mar; 432(7):2405-2427. PubMed ID: 32142789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tight junctions of the proximal tubule and their channel proteins.
    Fromm M; Piontek J; Rosenthal R; Günzel D; Krug SM
    Pflugers Arch; 2017 Aug; 469(7-8):877-887. PubMed ID: 28600680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical and biophysical analyses of tight junction permeability made of claudin-16 and claudin-19 dimerization.
    Gong Y; Renigunta V; Zhou Y; Sunq A; Wang J; Yang J; Renigunta A; Baker LA; Hou J
    Mol Biol Cell; 2015 Dec; 26(24):4333-46. PubMed ID: 26446843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model for the architecture of claudin-based paracellular ion channels through tight junctions.
    Suzuki H; Tani K; Tamura A; Tsukita S; Fujiyoshi Y
    J Mol Biol; 2015 Jan; 427(2):291-7. PubMed ID: 25451028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conceptual barriers to understanding physical barriers.
    Lingaraju A; Long TM; Wang Y; Austin JR; Turner JR
    Semin Cell Dev Biol; 2015 Jun; 42():13-21. PubMed ID: 26003050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ruffles and spikes: Control of tight junction morphology and permeability by claudins.
    Lynn KS; Peterson RJ; Koval M
    Biochim Biophys Acta Biomembr; 2020 Sep; 1862(9):183339. PubMed ID: 32389670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational Modeling of Claudin Structure and Function.
    Fuladi S; Jannat RW; Shen L; Weber CR; Khalili-Araghi F
    Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 31979311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Claudins: From Tight Junctions to Biological Systems.
    Tsukita S; Tanaka H; Tamura A
    Trends Biochem Sci; 2019 Feb; 44(2):141-152. PubMed ID: 30665499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Claudin-23 reshapes epithelial tight junction architecture to regulate barrier function.
    Raya-Sandino A; Lozada-Soto KM; Rajagopal N; Garcia-Hernandez V; Luissint AC; Brazil JC; Cui G; Koval M; Parkos CA; Nangia S; Nusrat A
    Nat Commun; 2023 Oct; 14(1):6214. PubMed ID: 37798277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational Models of Claudin Assembly in Tight Junctions and Strand Properties.
    McGuinness S; Sajjadi S; Weber CR; Khalili-Araghi F
    Int J Mol Sci; 2024 Mar; 25(6):. PubMed ID: 38542338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structures of claudins: insights into their intermolecular interactions.
    Suzuki H; Tani K; Fujiyoshi Y
    Ann N Y Acad Sci; 2017 Jun; 1397(1):25-34. PubMed ID: 28605828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In tight junctions, claudins regulate the interactions between occludin, tricellulin and marvelD3, which, inversely, modulate claudin oligomerization.
    Cording J; Berg J; Käding N; Bellmann C; Tscheik C; Westphal JK; Milatz S; Günzel D; Wolburg H; Piontek J; Huber O; Blasig IE
    J Cell Sci; 2013 Jan; 126(Pt 2):554-64. PubMed ID: 23203797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Claudin switching: Physiological plasticity of the Tight Junction.
    Capaldo CT; Nusrat A
    Semin Cell Dev Biol; 2015 Jun; 42():22-9. PubMed ID: 25957515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tight junction channel regulation by interclaudin interference.
    Shashikanth N; France MM; Xiao R; Haest X; Rizzo HE; Yeste J; Reiner J; Turner JR
    Nat Commun; 2022 Jun; 13(1):3780. PubMed ID: 35773259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polar and charged extracellular residues conserved among barrier-forming claudins contribute to tight junction strand formation.
    Piontek A; Rossa J; Protze J; Wolburg H; Hempel C; Günzel D; Krause G; Piontek J
    Ann N Y Acad Sci; 2017 Jun; 1397(1):143-156. PubMed ID: 28415153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The coculture method to examine interactions between claudin isoforms in tight junction-free HEK293 cells and tight junction-bearing MDCK II cells.
    Inai T
    Methods Mol Biol; 2011; 762():101-14. PubMed ID: 21717352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unique structural features of claudin-5 and claudin-15 lead to functionally distinct tight junction strand architecture.
    Rajagopal N; Nangia S
    Ann N Y Acad Sci; 2022 Nov; 1517(1):225-233. PubMed ID: 36114674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Architecture of the paracellular channels formed by claudins of the blood-brain barrier tight junctions.
    Irudayanathan FJ; Wang N; Wang X; Nangia S
    Ann N Y Acad Sci; 2017 Oct; 1405(1):131-146. PubMed ID: 28614588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disruption of Claudin-Made Tight Junction Barriers by
    Ogbu CP; Roy S; Vecchio AJ
    Cells; 2022 Mar; 11(5):. PubMed ID: 35269525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.