These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 38859612)

  • 1. Multifunctional Nanomaterials for Advancing Neural Interfaces: Recording, Stimulation, and Beyond.
    Ranke D; Lee I; Gershanok SA; Jo S; Trotto E; Wang Y; Balakrishnan G; Cohen-Karni T
    Acc Chem Res; 2024 Jul; 57(13):1803-1814. PubMed ID: 38859612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soft Bioelectronics Using Nanomaterials and Nanostructures for Neuroengineering.
    Kim M; Lee H; Nam S; Kim DH; Cha GD
    Acc Chem Res; 2024 Jun; 57(11):1633-1647. PubMed ID: 38752397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review of organic and inorganic biomaterials for neural interfaces.
    Fattahi P; Yang G; Kim G; Abidian MR
    Adv Mater; 2014 Mar; 26(12):1846-85. PubMed ID: 24677434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-Dimensional Ti
    Driscoll N; Richardson AG; Maleski K; Anasori B; Adewole O; Lelyukh P; Escobedo L; Cullen DK; Lucas TH; Gogotsi Y; Vitale F
    ACS Nano; 2018 Oct; 12(10):10419-10429. PubMed ID: 30207690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of Ti3C2 MXene Microelectrode Arrays for In Vivo Neural Recording.
    Driscoll N; Maleski K; Richardson AG; Murphy B; Anasori B; Lucas TH; Gogotsi Y; Vitale F
    J Vis Exp; 2020 Feb; (156):. PubMed ID: 32116295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ruthenium oxide based microelectrode arrays for in vitro and in vivo neural recording and stimulation.
    Atmaramani R; Chakraborty B; Rihani RT; Usoro J; Hammack A; Abbott J; Nnoromele P; Black BJ; Pancrazio JJ; Cogan SF
    Acta Biomater; 2020 Jan; 101():565-574. PubMed ID: 31678740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in Nano Neuroscience: From Nanomaterials to Nanotools.
    Pampaloni NP; Giugliano M; Scaini D; Ballerini L; Rauti R
    Front Neurosci; 2018; 12():953. PubMed ID: 30697140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring Present and Future Directions in Nano-Enhanced Optoelectronic Neuromodulation.
    Yang C; Cheng Z; Li P; Tian B
    Acc Chem Res; 2024 May; 57(9):1398-1410. PubMed ID: 38652467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuro-nanotechnology: diagnostic and therapeutic nano-based strategies in applied neuroscience.
    Shabani L; Abbasi M; Azarnew Z; Amani AM; Vaez A
    Biomed Eng Online; 2023 Jan; 22(1):1. PubMed ID: 36593487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nano-Bioelectronics.
    Zhang A; Lieber CM
    Chem Rev; 2016 Jan; 116(1):215-57. PubMed ID: 26691648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Development of Neural Microelectrodes with Dual-Mode Detection.
    Xu M; Zhao Y; Xu G; Zhang Y; Sun S; Sun Y; Wang J; Pei R
    Biosensors (Basel); 2022 Dec; 13(1):. PubMed ID: 36671894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remote nongenetic optical modulation of neuronal activity using fuzzy graphene.
    Rastogi SK; Garg R; Scopelliti MG; Pinto BI; Hartung JE; Kim S; Murphey CGE; Johnson N; San Roman D; Bezanilla F; Cahoon JF; Gold MS; Chamanzar M; Cohen-Karni T
    Proc Natl Acad Sci U S A; 2020 Jun; 117(24):13339-13349. PubMed ID: 32482882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct electrodeposition of Graphene enhanced conductive polymer on microelectrode for biosensing application.
    Wang MH; Ji BW; Gu XW; Tian HC; Kang XY; Yang B; Wang XL; Chen X; Li CY; Liu JQ
    Biosens Bioelectron; 2018 Jan; 99():99-107. PubMed ID: 28743085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polydopamine-doped conductive polymer microelectrodes for neural recording and stimulation.
    Kim R; Nam Y
    J Neurosci Methods; 2019 Oct; 326():108369. PubMed ID: 31326604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving the Biocompatibility and Functionality of Neural Interface Devices with Silica Nanoparticles.
    Shi D; Narayanan S; Woeppel K; Cui XT
    Acc Chem Res; 2024 Jun; 57(12):1684-1695. PubMed ID: 38814586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel bio-mimicking, planar nano-edge microelectrode enables enhanced long-term neural recording.
    Wijdenes P; Ali H; Armstrong R; Zaidi W; Dalton C; Syed NI
    Sci Rep; 2016 Oct; 6():34553. PubMed ID: 27731326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interfacing Neurons with Nanostructured Electrodes Modulates Synaptic Circuit Features.
    Domínguez-Bajo A; Rodilla BL; Calaresu I; Arché-Núñez A; González-Mayorga A; Scaini D; Pérez L; Camarero J; Miranda R; López-Dolado E; González MT; Ballerini L; Serrano MC
    Adv Biosyst; 2020 Sep; 4(9):e2000117. PubMed ID: 32761896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Advances in Materials, Devices, and Systems for Neural Interfaces.
    Won SM; Song E; Zhao J; Li J; Rivnay J; Rogers JA
    Adv Mater; 2018 Jul; 30(30):e1800534. PubMed ID: 29855089
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.