These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38859701)

  • 1. Solvent-Dependent Dynamics of Cellulose Nanocrystals in Process-Relevant Flow Fields.
    Wang R; He H; Tian J; Chodankar S; Hsiao BS; Rosén T
    Langmuir; 2024 Jun; 40(25):13319-13329. PubMed ID: 38859701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellulose nanofibrils and nanocrystals in confined flow: Single-particle dynamics to collective alignment revealed through scanning small-angle x-ray scattering and numerical simulations.
    Rosén T; Wang R; Zhan C; He H; Chodankar S; Hsiao BS
    Phys Rev E; 2020 Mar; 101(3-1):032610. PubMed ID: 32289908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shear-free mixing to achieve accurate temporospatial nanoscale kinetics through scanning-SAXS: ion-induced phase transition of dispersed cellulose nanocrystals.
    Rosén T; Wang R; He H; Zhan C; Chodankar S; Hsiao BS
    Lab Chip; 2021 Mar; 21(6):1084-1095. PubMed ID: 33514993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shear-Induced Alignment of Anisotropic Nanoparticles in a Single-Droplet Oscillatory Microfluidic Platform.
    Alizadehgiashi M; Khabibullin A; Li Y; Prince E; Abolhasani M; Kumacheva E
    Langmuir; 2018 Jan; 34(1):322-330. PubMed ID: 29202244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvent-dependent morphology and anisotropic microscopic dynamics of cellulose nanocrystals under electric fields.
    Kang K; Eremin A
    Phys Rev E; 2021 Mar; 103(3-1):032606. PubMed ID: 33862807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrophobization of Cellulose Nanocrystals for Aqueous Colloidal Suspensions and Gels.
    Nigmatullin R; Johns MA; Muñoz-García JC; Gabrielli V; Schmitt J; Angulo J; Khimyak YZ; Scott JL; Edler KJ; Eichhorn SJ
    Biomacromolecules; 2020 May; 21(5):1812-1823. PubMed ID: 31984728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding ion-induced assembly of cellulose nanofibrillar gels through shear-free mixing and
    Rosén T; Wang R; He H; Zhan C; Chodankar S; Hsiao BS
    Nanoscale Adv; 2021 Aug; 3(17):4940-4951. PubMed ID: 34485817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Breakdown and buildup mechanisms of cellulose nanocrystal suspensions under shear and upon relaxation probed by SAXS and SALS.
    Pignon F; Challamel M; De Geyer A; Elchamaa M; Semeraro EF; Hengl N; Jean B; Putaux JL; Gicquel E; Bras J; Prevost S; Sztucki M; Narayanan T; Djeridi H
    Carbohydr Polym; 2021 May; 260():117751. PubMed ID: 33712121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimuli-responsive self-assembly of cellulose nanocrystals (CNCs): Structures, functions, and biomedical applications.
    Ganguly K; Patel DK; Dutta SD; Shin WC; Lim KT
    Int J Biol Macromol; 2020 Jul; 155():456-469. PubMed ID: 32222290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow fields control nanostructural organization in semiflexible networks.
    Rosén T; Mittal N; Roth SV; Zhang P; Lundell F; Söderberg LD
    Soft Matter; 2020 Jun; 16(23):5439-5449. PubMed ID: 32469347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembly of cellulose nanocrystals of different lengths.
    Raghuwanshi VS; Browne C; Batchelor W; Garnier G
    J Colloid Interface Sci; 2023 Jan; 630(Pt B):249-259. PubMed ID: 36327727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of Tannic Acid on the Cholesteric Structure of Cellulose Nanocrystals.
    Jie H; Feng K; Lu M; Jin Z
    Langmuir; 2024 Jul; 40(27):13834-13843. PubMed ID: 38920318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-axis alignment of Rod-like cellulose nanocrystals in drying droplets.
    Pritchard CQ; Navarro F; Roman M; Bortner MJ
    J Colloid Interface Sci; 2021 Dec; 603():450-458. PubMed ID: 34214721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directed Assembly of Cellulose Nanocrystals in Their Native Solid-State Template of a Processed Fiber Cell Wall.
    Solala I; Driemeier C; Mautner A; Penttilä PA; Seitsonen J; Leppänen M; Mihhels K; Kontturi E
    Macromol Rapid Commun; 2021 Jun; 42(12):e2100092. PubMed ID: 33955068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of Cellulose Nanocrystal Alignment during 3D Printing.
    Hausmann MK; Rühs PA; Siqueira G; Läuger J; Libanori R; Zimmermann T; Studart AR
    ACS Nano; 2018 Jul; 12(7):6926-6937. PubMed ID: 29975510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Confined Shear Alignment of Ultrathin Films of Cellulose Nanocrystals.
    Jinkins KR; Wang J; Dwyer JH; Wang X; Arnold MS
    ACS Appl Bio Mater; 2021 Nov; 4(11):7961-7966. PubMed ID: 35006777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liquid-crystalline assembly of spherical cellulose nanocrystals.
    Liu B; Cheng L; Yuan Y; Hu J; Zhou L; Zong L; Duan Y; Zhang J
    Int J Biol Macromol; 2023 Jul; 242(Pt 1):124738. PubMed ID: 37169056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Covalent Crosslinking of Colloidal Cellulose Nanocrystals for Multifunctional Nanostructured Hydrogels with Tunable Physicochemical Properties.
    Batta-Mpouma J; Kandhola G; Sakon J; Kim JW
    Biomacromolecules; 2022 Oct; 23(10):4085-4096. PubMed ID: 36166819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anisotropic cellulose nanocrystal hydrogel with multi-stimuli response to temperature and mechanical stress.
    Liu L; Tanguy NR; Yan N; Wu Y; Liu X; Qing Y
    Carbohydr Polym; 2022 Mar; 280():119005. PubMed ID: 35027120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Situ and Real-Time Studies, via Synchrotron X-ray Scattering, of the Orientational Order of Cellulose Nanocrystals during Solution Shearing.
    Sanchez-Botero L; Dimov AV; Li R; Smilgies DM; Hinestroza JP
    Langmuir; 2018 May; 34(18):5263-5272. PubMed ID: 29641208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.