These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 38859722)
1. From lab to field: Prussian blue frameworks as sustainable cathode materials. Anil Kumar Y; Sana SS; Ramachandran T; Assiri MA; Srinivasa Rao S; Kim SC Dalton Trans; 2024 Jul; 53(26):10770-10804. PubMed ID: 38859722 [TBL] [Abstract][Full Text] [Related]
2. Energy storage materials derived from Prussian blue analogues. Ma F; Li Q; Wang T; Zhang H; Wu G Sci Bull (Beijing); 2017 Mar; 62(5):358-368. PubMed ID: 36659421 [TBL] [Abstract][Full Text] [Related]
3. Chemical Properties, Structural Properties, and Energy Storage Applications of Prussian Blue Analogues. Li WJ; Han C; Cheng G; Chou SL; Liu HK; Dou SX Small; 2019 Aug; 15(32):e1900470. PubMed ID: 30977287 [TBL] [Abstract][Full Text] [Related]
4. Metal-Organic Frameworks and Their Derivatives: Designing Principles and Advances toward Advanced Cathode Materials for Alkali Metal Ion Batteries. Zhu W; Li A; Wang Z; Yang J; Xu Y Small; 2021 Jun; 17(22):e2006424. PubMed ID: 33734586 [TBL] [Abstract][Full Text] [Related]
5. Element screening of metal sites in Fe-based Prussian blue framework materials for ammonium ion battery applications: a first-principles study. Zhang Y; Xing J; Zhang B; Tong L; Fu X Phys Chem Chem Phys; 2024 Jan; 26(3):2387-2394. PubMed ID: 38168687 [TBL] [Abstract][Full Text] [Related]
6. Acid-Assisted Ball Mill Synthesis of Carboxyl-Functional-Group-Modified Prussian Blue as Sodium-Ion Battery Cathode. Luo Y; Peng J; Yin S; Xue L; Yan Y Nanomaterials (Basel); 2022 Apr; 12(8):. PubMed ID: 35457998 [TBL] [Abstract][Full Text] [Related]
7. Reforming Magnet Waste to Prussian Blue for Sustainable Sodium-Ion Batteries. Li QY; Xu C; Liang YR; Yang Z; LeGe N; Peng J; Chen L; Lai WH; Wang YX; Tao Z; Liu M; Chou S ACS Appl Mater Interfaces; 2022 Oct; 14(42):47747-47757. PubMed ID: 36250578 [TBL] [Abstract][Full Text] [Related]
8. Prussian Blue Analogues in Aqueous Batteries and Desalination Batteries. Xu C; Yang Z; Zhang X; Xia M; Yan H; Li J; Yu H; Zhang L; Shu J Nanomicro Lett; 2021 Aug; 13(1):166. PubMed ID: 34351516 [TBL] [Abstract][Full Text] [Related]
9. Structural Engineering of Prussian Blue Analogues Enabling All-Climate and Ultralong Cycling Sodium-Ion Batteries. Peng J; Hua W; Yang Z; Li JY; Wang J; Liang Y; Zhao L; Lai W; Wu X; Cheng Z; Peleckis G; Indris S; Wang JZ; Liu HK; Dou SX; Chou S ACS Nano; 2024 Jul; ():. PubMed ID: 39007545 [TBL] [Abstract][Full Text] [Related]
10. Hollow Structures Based on Prussian Blue and Its Analogs for Electrochemical Energy Storage and Conversion. Nai J; Lou XWD Adv Mater; 2019 Sep; 31(38):e1706825. PubMed ID: 30155969 [TBL] [Abstract][Full Text] [Related]
11. Hotspots analysis and perspectives of Prussian blue analogues (PBAs) in environment and energy in recent 20 years by CiteSpace. Du X; Hou Y Environ Sci Pollut Res Int; 2023 Jan; 30(5):11141-11174. PubMed ID: 36508097 [TBL] [Abstract][Full Text] [Related]
12. Synthesis and Applications of Prussian Blue and Its Analogues as Electrochemical Sensors. Ying S; Chen C; Wang J; Lu C; Liu T; Kong Y; Yi FY Chempluschem; 2021 Dec; 86(12):1608-1622. PubMed ID: 34907675 [TBL] [Abstract][Full Text] [Related]
13. In Situ Self-Assembly of Core-Shell Multimetal Prussian Blue Analogues for High-Performance Sodium-Ion Batteries. Yin J; Shen Y; Li C; Fan C; Sun S; Liu Y; Peng J; Qing L; Han J ChemSusChem; 2019 Nov; 12(21):4786-4790. PubMed ID: 31448557 [TBL] [Abstract][Full Text] [Related]
14. Battery-type hollow Prussian blue analogues for asymmetric supercapacitors. Tian G; Ran X; Wang Q; Zhang D Dalton Trans; 2022 Jan; 51(3):1032-1040. PubMed ID: 34935802 [TBL] [Abstract][Full Text] [Related]
15. MnFe Prussian Blue Analogue Open Cages for Sodium-Ion Batteries: Simultaneous Evolution of Structure, Morphology, and Energy Storage Properties. Wang W; Xing Z; Ren H; Wang Q; Gao X; Nie C; Ju Z Small; 2024 Sep; 20(38):e2402072. PubMed ID: 38773874 [TBL] [Abstract][Full Text] [Related]
16. Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries. Wang W; Gang Y; Hu Z; Yan Z; Li W; Li Y; Gu QF; Wang Z; Chou SL; Liu HK; Dou SX Nat Commun; 2020 Feb; 11(1):980. PubMed ID: 32080172 [TBL] [Abstract][Full Text] [Related]
17. Iron-Vanadium Incorporated Ferrocyanides as Potential Cathode Materials for Application in Sodium-Ion Batteries. Nguyen TP; Kim IT Micromachines (Basel); 2023 Feb; 14(3):. PubMed ID: 36984928 [TBL] [Abstract][Full Text] [Related]
18. Unlocking the Potential of Amorphous Prussian Blue with Highly Active Mn Sites at Room Temperature for Impressive Oxygen Evolution Reaction and Super Capacitor Electrochemical Performance. Wei L; Meng D; Mao S; Wu X; Huang H; Jiang Q; Tang J Small; 2024 Feb; 20(7):e2303946. PubMed ID: 37806767 [TBL] [Abstract][Full Text] [Related]
19. Prussian Blue Analogues for Sodium-Ion Batteries: Past, Present, and Future. Peng J; Zhang W; Liu Q; Wang J; Chou S; Liu H; Dou S Adv Mater; 2022 Apr; 34(15):e2108384. PubMed ID: 34918850 [TBL] [Abstract][Full Text] [Related]
20. Achieving High Performance Electrode for Energy Storage with Advanced Prussian Blue-Drived Nanocomposites-A Review. Cui D; Wang R; Qian C; Shen H; Xia J; Sun K; Liu H; Guo C; Li J; Yu F; Bao W Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837059 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]