These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 38859782)

  • 1. Polypharmacology-Driven Discovery and Design of Highly Selective, Dual and Multitargeting Inhibitors of
    Amandy FV; Neri GLL; Manzano JAH; Go AD; Macabeo APG
    Curr Drug Targets; 2024; 25(9):620-634. PubMed ID: 38859782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Editorial: Current status and perspective on drug targets in tubercle bacilli and drug design of antituberculous agents based on structure-activity relationship.
    Tomioka H
    Curr Pharm Des; 2014; 20(27):4305-6. PubMed ID: 24245755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multitargeting Compounds: A Promising Strategy to Overcome Multi-Drug Resistant Tuberculosis.
    Stelitano G; Sammartino JC; Chiarelli LR
    Molecules; 2020 Mar; 25(5):. PubMed ID: 32182964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational medicinal chemistry for rational drug design: Identification of novel chemical structures with potential anti-tuberculosis activity.
    Koseki Y; Aoki S
    Curr Top Med Chem; 2014; 14(1):176-88. PubMed ID: 24236720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drug repositioning for anti-tuberculosis drugs: an in silico polypharmacology approach.
    Madugula SS; Nagamani S; Jamir E; Priyadarsinee L; Sastry GN
    Mol Divers; 2022 Jun; 26(3):1675-1695. PubMed ID: 34468898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design, synthesis and investigation on the structure-activity relationships of N-substituted 2-aminothiazole derivatives as antitubercular agents.
    Pieroni M; Wan B; Cho S; Franzblau SG; Costantino G
    Eur J Med Chem; 2014 Jan; 72():26-34. PubMed ID: 24333612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in the development of DprE1 inhibitors using AI/CADD approaches.
    Chen K; Xu R; Hu X; Li D; Hou T; Kang Y
    Drug Discov Today; 2024 Jun; 29(6):103987. PubMed ID: 38670256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current Advances in Antitubercular Drug Discovery: Potent Prototypes and New Targets.
    Dos Santos Fernandes GF; Jornada DH; de Souza PC; Chin CM; Pavan FR; Dos Santos JL
    Curr Med Chem; 2015; 22(27):3133-61. PubMed ID: 26282941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybridization Approach to Drug Discovery Inhibiting
    Zampieri D; Mamolo MG
    Curr Top Med Chem; 2021; 21(9):777-788. PubMed ID: 32814528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Opportunities for overcoming tuberculosis: Emerging targets and their inhibitors.
    Yang L; Hu X; Chai X; Ye Q; Pang J; Li D; Hou T
    Drug Discov Today; 2022 Jan; 27(1):326-336. PubMed ID: 34537334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drug targets exploited in Mycobacterium tuberculosis: Pitfalls and promises on the horizon.
    Bhat ZS; Rather MA; Maqbool M; Ahmad Z
    Biomed Pharmacother; 2018 Jul; 103():1733-1747. PubMed ID: 29864964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Expanding Diversity of Mycobacterium tuberculosis Drug Targets.
    Wellington S; Hung DT
    ACS Infect Dis; 2018 May; 4(5):696-714. PubMed ID: 29412643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An appraisal of anti-mycobacterial activity with structure-activity relationship of piperazine and its analogues: A review.
    Girase PS; Dhawan S; Kumar V; Shinde SR; Palkar MB; Karpoormath R
    Eur J Med Chem; 2021 Jan; 210():112967. PubMed ID: 33190957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Harnessing Biological Insight to Accelerate Tuberculosis Drug Discovery.
    de Wet TJ; Warner DF; Mizrahi V
    Acc Chem Res; 2019 Aug; 52(8):2340-2348. PubMed ID: 31361123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mycobacterial Targets for Thiourea Derivatives: Opportunities for Virtual Screening in Tuberculosis Drug Discovery.
    de Melo Milani V; Silva ML; Camargo PG; de Lima Ferreira Bispo M
    Curr Med Chem; 2024; 31(29):4703-4724. PubMed ID: 38375848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opportunities and challenges of using five-membered ring compounds as promising antitubercular agents.
    Yan M; Xu L; Wang Y; Wan J; Liu T; Liu W; Wan Y; Zhang B; Wang R; Li Q
    Drug Dev Res; 2020 Jun; 81(4):402-418. PubMed ID: 31904877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mycobacterium tuberculosis-Secreted Tyrosine Phosphatases as Targets Against Tuberculosis: Exploring Natural Sources in Searching for New Drugs.
    Mascarello A; Chiaradia-Delatorre LD; Mori M; Terenzi H; Botta B
    Curr Pharm Des; 2016; 22(12):1561-9. PubMed ID: 26759082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel targets and inhibitors of the
    Harikishore A; Mathiyazakan V; Pethe K; Grüber G
    Expert Opin Drug Discov; 2023; 18(8):917-927. PubMed ID: 37332221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small organic molecules targeting the energy metabolism of Mycobacterium tuberculosis.
    Urban M; Šlachtová V; Brulíková L
    Eur J Med Chem; 2021 Feb; 212():113139. PubMed ID: 33422979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.