These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 3886007)

  • 1. Nuclear magnetic resonance signal assignments of purified [13C]methyl-enriched yeast phenylalanine transfer ribonucleic acid.
    Smith C; Schmidt PG; Petsch J; Agris PF
    Biochemistry; 1985 Mar; 24(6):1434-40. PubMed ID: 3886007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transfer RNA contains sites of localized positive charge: carbon NMR studies of [13C]methyl-enriched Escherichia coli and yeast tRNAPhe.
    Agris PF; Sierzputowska-Gracz H; Smith C
    Biochemistry; 1986 Sep; 25(18):5126-31. PubMed ID: 3533144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Internal motions in yeast phenylalanine transfer RNA from 13C NMR relaxation rates of modified base methyl groups: a model-free approach.
    Schmidt PG; Sierzputowska-Gracz H; Agris PF
    Biochemistry; 1987 Dec; 26(26):8529-34. PubMed ID: 3327524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Practical synthesis of wybutosine, the hypermodified nucleoside of yeast phenylalanine transfer ribonucleic acid.
    Itaya T; Kanai T; Iida T
    Chem Pharm Bull (Tokyo); 2002 Apr; 50(4):530-3. PubMed ID: 11964003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of transfer RNA by carbon NMR: resolution of single carbon resonances from 13C-enriched, purified species.
    Agris PF; Schmidt PG
    Nucleic Acids Res; 1980 May; 8(9):2085-91. PubMed ID: 6159600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilization of an Escherichia coli mutant for carbon-13 enrichment of tRNA for NMR studies.
    Agris PF; Fujiwara FG; Schmidt CF; Loeppky RN
    Nucleic Acids Res; 1975 Sep; 2(9):1503-12. PubMed ID: 1101225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon-13 NMR studies on [4-13C] uracil labelled E. coli transfer RNA1(Val1).
    Schweizer MP; Hamill WD; Walkiw IJ; Horton WJ; Grant DM
    Nucleic Acids Res; 1980 May; 8(9):2075-83. PubMed ID: 7001371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Internal dynamics of transfer ribonucleic acid determined by nuclear magnetic resonance of carbon-13-enriched ribose carbon 1.
    Schmidt PG; Playl T; Agris PF
    Biochemistry; 1983 Mar; 22(6):1408-15. PubMed ID: 6188489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic pathways leading from amino acids to vitamin B12 in Propionibacterium shermanii, and the sources of the seven methyl carbons.
    Iida K; Kajiwara M
    FEBS J; 2007 Oct; 274(19):5090-5. PubMed ID: 17803685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel methyltransferase required for the formation of the hypermodified nucleoside wybutosine in eucaryotic tRNA.
    Kalhor HR; Penjwini M; Clarke S
    Biochem Biophys Res Commun; 2005 Aug; 334(2):433-40. PubMed ID: 16005430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complete nuclear magnetic resonance signal assignments and initial structural studies of [13C]methyl-enriched yeast transfer ribonucleic acid.
    Agris PF; Kovacs SA; Smith C; Kopper RA; Schmidt PG
    Biochemistry; 1983 Mar; 22(6):1402-8. PubMed ID: 6188488
    [No Abstract]   [Full Text] [Related]  

  • 12. Production of specific site probes of tRNA structure by enrichment with carbon 13 at particular locations.
    Tompson JG; Agris PF
    Nucleic Acids Res; 1979 Oct; 7(3):765-79. PubMed ID: 388347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of wyosine, the condensed tricyclic nucleoside of torula yeast phenylalanine transfer ribonucleic acid.
    Itaya T; Kanai T; Sawada T
    Chem Pharm Bull (Tokyo); 2002 Apr; 50(4):547-8. PubMed ID: 11964008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-resolution phosphorus nuclear magnetic resonance spectra of yeast phenylalanine transfer ribonucleic acid. Metal ion effects and tentative partial assignment of signals.
    Gorenstein DG; Goldfield EM; Chen R; Kovar K; Luxon BA
    Biochemistry; 1981 Apr; 20(8):2141-50. PubMed ID: 7016174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Partial assignment of resonances in the 19F nuclear magnetic resonance spectra of 5-fluorouracil-substituted transfer RNAs.
    Hardin CC; Gollnick P; Horowitz J
    Biochemistry; 1988 Jan; 27(1):487-95. PubMed ID: 3280022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proton nuclear magnetic resonance of minor nucleosides in yeast phenylalanine transfer ribonucleic acid. Conformational changes as a consequence of aminoacylation, removal of the Y base, and codon--anticodon interaction.
    Davanloo P; Sprinzl M; Cramer F
    Biochemistry; 1979 Jul; 18(15):3189-99. PubMed ID: 380644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nuclear magnetic resonance studies on the tertiary folding of transfer ribonucleic acid: assignment of the 7-methylguanosine resonance.
    Hurd RE; Reid BR
    Biochemistry; 1979 Sep; 18(18):4017-24. PubMed ID: 385042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification and NMR studies of [methyl-13C]methionine-labeled truncated methionyl-tRNA synthetase.
    Rosevear PR
    Biochemistry; 1988 Oct; 27(20):7931-9. PubMed ID: 3061464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complete nuclear magnetic resonance signal assignments and initial structural studies of [13C]methyl-enriched transfer ribonucleic acid.
    Tompson JG; Hayashi F; Paukstelis JV; Loeppky RN; Agris PF
    Biochemistry; 1979 May; 18(10):2079-85. PubMed ID: 373800
    [No Abstract]   [Full Text] [Related]  

  • 20. Natural-abundance carbon-13 Fourier-transform nuclear magnetic resonance spectra and spin lattice relaxation times of unfractionated yeast transfer-FNA.
    Komoroski RA; Allerhand A
    Proc Natl Acad Sci U S A; 1972 Jul; 69(7):1804-8. PubMed ID: 4558659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.