BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38860288)

  • 1. Gaps in our understanding of how vagal afferents to the small intestinal mucosa detect luminal stimuli.
    Fox EA; Serlin HK
    Am J Physiol Regul Integr Comp Physiol; 2024 Jun; ():. PubMed ID: 38860288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurotrophin-4 is essential for survival of the majority of vagal afferents to the mucosa of the small intestine, but not the stomach.
    Serlin HK; Fox EA
    Auton Neurosci; 2021 Jul; 233():102811. PubMed ID: 33932866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensory signal transduction in the vagal primary afferent neurons.
    Li Y
    Curr Med Chem; 2007; 14(24):2554-63. PubMed ID: 17979708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signalling the state of the digestive tract.
    Grundy D
    Auton Neurosci; 2006 Apr; 125(1-2):76-80. PubMed ID: 16473562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Profiling of G protein-coupled receptors in vagal afferents reveals novel gut-to-brain sensing mechanisms.
    Egerod KL; Petersen N; Timshel PN; Rekling JC; Wang Y; Liu Q; Schwartz TW; Gautron L
    Mol Metab; 2018 Jun; 12():62-75. PubMed ID: 29673577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vagal sensors in the rat duodenal mucosa: distribution and structure as revealed by in vivo DiI-tracing.
    Berthoud HR; Kressel M; Raybould HE; Neuhuber WL
    Anat Embryol (Berl); 1995 Mar; 191(3):203-12. PubMed ID: 7771683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ghrelin selectively reduces mechanosensitivity of upper gastrointestinal vagal afferents.
    Page AJ; Slattery JA; Milte C; Laker R; O'Donnell T; Dorian C; Brierley SM; Blackshaw LA
    Am J Physiol Gastrointest Liver Physiol; 2007 May; 292(5):G1376-84. PubMed ID: 17290011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abdominal vagotomy reveals majority of small intestinal mucosal afferents labeled in na
    Serlin HK; Fox EA
    J Comp Neurol; 2020 Apr; 528(5):816-839. PubMed ID: 31618460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The long chain fatty acid oleate activates mouse intestinal afferent nerves in vitro.
    Webster WA; Beyak MJ
    Can J Physiol Pharmacol; 2013 May; 91(5):375-9. PubMed ID: 23656469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gut-brain nutrient sensing in food reward.
    Shechter A; Schwartz GJ
    Appetite; 2018 Mar; 122():32-35. PubMed ID: 28007490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intestinal serotonin acts as a paracrine substance to mediate vagal signal transmission evoked by luminal factors in the rat.
    Zhu JX; Zhu XY; Owyang C; Li Y
    J Physiol; 2001 Feb; 530(Pt 3):431-42. PubMed ID: 11158274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of gastrointestinal vagal afferents in the control of food intake: current prospects.
    Schwartz GJ
    Nutrition; 2000 Oct; 16(10):866-73. PubMed ID: 11054591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early postnatal overnutrition: potential roles of gastrointestinal vagal afferents and brain-derived neurotrophic factor.
    Fox EA; Biddinger JE
    Physiol Behav; 2012 Jun; 106(3):400-12. PubMed ID: 22712064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic tracing of Nav1.8-expressing vagal afferents in the mouse.
    Gautron L; Sakata I; Udit S; Zigman JM; Wood JN; Elmquist JK
    J Comp Neurol; 2011 Oct; 519(15):3085-101. PubMed ID: 21618224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gastric vagal afferent modulation by leptin is influenced by food intake status.
    Kentish SJ; O'Donnell TA; Isaacs NJ; Young RL; Li H; Harrington AM; Brierley SM; Wittert GA; Blackshaw LA; Page AJ
    J Physiol; 2013 Apr; 591(7):1921-34. PubMed ID: 23266933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vagal afferent innervation and regulation of gastric function.
    Raybould HE; Holzer P; Thiefin G; Holzer HH; Yoneda M; Tache YF
    Adv Exp Med Biol; 1991; 298():109-27. PubMed ID: 1950779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nutrient sensing in the gut: interactions between chemosensory cells, visceral afferents and the secretion of satiation peptides.
    Steinert RE; Beglinger C
    Physiol Behav; 2011 Nov; 105(1):62-70. PubMed ID: 21376067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization and activation of glucagon-like peptide-2 receptors on vagal afferents in the rat.
    Nelson DW; Sharp JW; Brownfield MS; Raybould HE; Ney DM
    Endocrinology; 2007 May; 148(5):1954-62. PubMed ID: 17234710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Meal-Sensing Signaling Pathways in Functional Dyspepsia.
    Page AJ; Li H
    Front Syst Neurosci; 2018; 12():10. PubMed ID: 29674959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chylomicron components activate duodenal vagal afferents via a cholecystokinin A receptor-mediated pathway to inhibit gastric motor function in the rat.
    Glatzle J; Wang Y; Adelson DW; Kalogeris TJ; Zittel TT; Tso P; Wei JY; Raybould HE
    J Physiol; 2003 Jul; 550(Pt 2):657-64. PubMed ID: 12766241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.