These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 38860425)

  • 1. OptoLacI: optogenetically engineered lactose operon repressor LacI responsive to light instead of IPTG.
    Liu M; Li Z; Huang J; Yan J; Zhao G; Zhang Y
    Nucleic Acids Res; 2024 Jul; 52(13):8003-8016. PubMed ID: 38860425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optogenetic control of the lac operon for bacterial chemical and protein production.
    Lalwani MA; Ip SS; Carrasco-López C; Day C; Zhao EM; Kawabe H; Avalos JL
    Nat Chem Biol; 2021 Jan; 17(1):71-79. PubMed ID: 32895498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Establishment of a low-dosage-IPTG inducible expression system construction method in Escherichia coli.
    Zhao M; Tao XY; Wang FQ; Ren YH; Wei DZ
    J Basic Microbiol; 2018 Sep; 58(9):806-810. PubMed ID: 29962051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A single mutation in the core domain of the lac repressor reduces leakiness.
    Gatti-Lafranconi P; Dijkman WP; Devenish SR; Hollfelder F
    Microb Cell Fact; 2013 Jul; 12():67. PubMed ID: 23834731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fourteen Ways to Reroute Cooperative Communication in the Lactose Repressor: Engineering Regulatory Proteins with Alternate Repressive Functions.
    Richards DH; Meyer S; Wilson CJ
    ACS Synth Biol; 2017 Jan; 6(1):6-12. PubMed ID: 27598336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of LacI autoregulation on the performance of the lactose utilization system in Escherichia coli.
    Semsey S; Jauffred L; Csiszovszki Z; Erdossy J; Stéger V; Hansen S; Krishna S
    Nucleic Acids Res; 2013 Jul; 41(13):6381-90. PubMed ID: 23658223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering alternate cooperative-communications in the lactose repressor protein scaffold.
    Meyer S; Ramot R; Kishore Inampudi K; Luo B; Lin C; Amere S; Wilson CJ
    Protein Eng Des Sel; 2013 Jun; 26(6):433-43. PubMed ID: 23587523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling the expression of rhizobial genes during nodule development with elements and an inducer of the lac operon.
    Box J; Noel KD
    Mol Plant Microbe Interact; 2011 Apr; 24(4):478-86. PubMed ID: 21375387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Altering residues N125 and D149 impacts sugar effector binding and allosteric parameters in Escherichia coli lactose repressor.
    Xu J; Liu S; Chen M; Ma J; Matthews KS
    Biochemistry; 2011 Oct; 50(42):9002-13. PubMed ID: 21928765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of isopropyl-beta-D-thiogalactopyranosid induction of the lac operon on the specificity of spontaneous and doxorubicin-induced mutations in Escherichia coli.
    Veigl ML; Donover SP; Anderson RD; Akst L; Sedwick CE; Sedwick WD
    Environ Mol Mutagen; 1995; 26(1):16-25. PubMed ID: 7641704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. lac operon induction in Escherichia coli: Systematic comparison of IPTG and TMG induction and influence of the transacetylase LacA.
    Marbach A; Bettenbrock K
    J Biotechnol; 2012 Jan; 157(1):82-8. PubMed ID: 22079752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light-responsive control of bacterial gene expression: precise triggering of the lac promoter activity using photocaged IPTG.
    Binder D; Grünberger A; Loeschcke A; Probst C; Bier C; Pietruszka J; Wiechert W; Kohlheyer D; Jaeger KE; Drepper T
    Integr Biol (Camb); 2014 Aug; 6(8):755-65. PubMed ID: 24894989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of SotA and SotB, two Erwinia chrysanthemi proteins which modify isopropyl-beta-D-thiogalactopyranoside and lactose induction of the Escherichia coli lac promoter.
    Condemine G
    J Bacteriol; 2000 Mar; 182(5):1340-5. PubMed ID: 10671456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The inducible lactose operator-repressor system is functional in the whole animal.
    Wu JD; Hsueh HC; Huang WT; Liu HS; Leung HW; Ho YR; Lin MT; Lai MD
    DNA Cell Biol; 1997 Jan; 16(1):17-22. PubMed ID: 9022041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tradeoffs and optimality in the evolution of gene regulation.
    Poelwijk FJ; de Vos MG; Tans SJ
    Cell; 2011 Aug; 146(3):462-70. PubMed ID: 21802129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LacI-DNA-IPTG loops: equilibria among conformations by single-molecule FRET.
    Goodson KA; Wang Z; Haeusler AR; Kahn JD; English DS
    J Phys Chem B; 2013 Apr; 117(16):4713-22. PubMed ID: 23406418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of the Mammalian Expression Vector System that can be Induced by IPTG and/or Lactose.
    Myung SH; Park J; Han JH; Kim TH
    J Microbiol Biotechnol; 2020 Aug; 30(8):1124-1131. PubMed ID: 32423185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SsrA-mediated tagging and proteolysis of LacI and its role in the regulation of lac operon.
    Abo T; Inada T; Ogawa K; Aiba H
    EMBO J; 2000 Jul; 19(14):3762-9. PubMed ID: 10899129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of the lacY gene on the induction of IPTG inducible promoters, studied in Escherichia coli and Pseudomonas fluorescens.
    Hansen LH; Knudsen S; Sørensen SJ
    Curr Microbiol; 1998 Jun; 36(6):341-7. PubMed ID: 9608745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering an allosteric transcription factor to respond to new ligands.
    Taylor ND; Garruss AS; Moretti R; Chan S; Arbing MA; Cascio D; Rogers JK; Isaacs FJ; Kosuri S; Baker D; Fields S; Church GM; Raman S
    Nat Methods; 2016 Feb; 13(2):177-83. PubMed ID: 26689263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.