These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 38860426)
1. Expedited Synthesis of Metal Phosphides Maximizes Dispersion, Air Stability, and Catalytic Performance in Selective Hydrogenation. Karam L; Farès C; Weidenthaler C; Neumann CN Angew Chem Int Ed Engl; 2024 Aug; 63(33):e202404292. PubMed ID: 38860426 [TBL] [Abstract][Full Text] [Related]
2. Transition Metal Phosphide Nanoparticles Supported on SBA-15 as Highly Selective Hydrodeoxygenation Catalysts for the Production of Advanced Biofuels. Yang Y; Ochoa-Hernández C; de la Peña O'Shea VA; Pizarro P; Coronado JM; Serrano DP J Nanosci Nanotechnol; 2015 Sep; 15(9):6642-50. PubMed ID: 26716223 [TBL] [Abstract][Full Text] [Related]
3. Interfacial nanoarchitectonics of nickel phosphide supported on activated carbon for transfer hydrogenation of nitroarenes under mild conditions. Sharma D; Choudhary P; Kumar S; Krishnan V J Colloid Interface Sci; 2024 Mar; 657():449-462. PubMed ID: 38061228 [TBL] [Abstract][Full Text] [Related]
4. Chalcogen-Based Precursors for Transition Metal (Co, Ni) Phosphides: (Di)chalcogenide-to-Phosphide Transformation via Chemical Extraction of Chalcogenides. Khan MD; Shombe GB; Khoza SH; Ayom GE; Revaprasadu N Inorg Chem; 2024 Aug; 63(31):14495-14508. PubMed ID: 39042764 [TBL] [Abstract][Full Text] [Related]
5. A nickel phosphide nanoalloy catalyst for the C-3 alkylation of oxindoles with alcohols. Fujita S; Imagawa K; Yamaguchi S; Yamasaki J; Yamazoe S; Mizugaki T; Mitsudome T Sci Rep; 2021 May; 11(1):10673. PubMed ID: 34021187 [TBL] [Abstract][Full Text] [Related]
6. Synthesis of Nickel Phosphide Electrocatalysts from Hybrid Metal Phosphonates. Zhang R; Russo PA; Feist M; Amsalem P; Koch N; Pinna N ACS Appl Mater Interfaces; 2017 Apr; 9(16):14013-14022. PubMed ID: 28357856 [TBL] [Abstract][Full Text] [Related]
7. Preparation and characterization of a supported system of Ni Costa DC; Soldati AL; Pecchi G; Bengoa JF; Marchetti SG; Vetere V Nanotechnology; 2018 May; 29(21):215702. PubMed ID: 29498624 [TBL] [Abstract][Full Text] [Related]
8. Prussian blue analogue derived cobalt-nickel phosphide/carbon nanotube composite as electrocatalyst for efficient and stable hydrogen evolution reaction in wide-pH environment. Ding Z; Yu H; Liu X; He N; Chen X; Li H; Wang M; Yamauchi Y; Xu X; Amin MA; Lu T; Pan L J Colloid Interface Sci; 2022 Jun; 616():210-220. PubMed ID: 35203034 [TBL] [Abstract][Full Text] [Related]
9. Facile Preparation of Ni2P with a Sulfur-Containing Surface Layer by Low-Temperature Reduction of Ni2P2S6. Tian S; Li X; Wang A; Prins R; Chen Y; Hu Y Angew Chem Int Ed Engl; 2016 Mar; 55(12):4030-4. PubMed ID: 26891348 [TBL] [Abstract][Full Text] [Related]
10. Mechanical mixtures of metal oxides and phosphorus pentoxide as novel precursors for the synthesis of transition-metal phosphides. Guo L; Zhao Y; Yao Z Dalton Trans; 2016 Jan; 45(3):1225-32. PubMed ID: 26667235 [TBL] [Abstract][Full Text] [Related]
11. MOF-Derived Cobalt Phosphide/Carbon Nanocubes for Selective Hydrogenation of Nitroarenes to Anilines. Yang S; Peng L; Oveisi E; Bulut S; Sun DT; Asgari M; Trukhina O; Queen WL Chemistry; 2018 Mar; 24(17):4234-4238. PubMed ID: 29265577 [TBL] [Abstract][Full Text] [Related]
12. Selective hydrogenation of butadiene over TiO2 supported copper, gold and gold-copper catalysts prepared by deposition-precipitation. Delannoy L; Thrimurthulu G; Reddy PS; Méthivier C; Nelayah J; Reddy BM; Ricolleau C; Louis C Phys Chem Chem Phys; 2014 Dec; 16(48):26514-27. PubMed ID: 25051298 [TBL] [Abstract][Full Text] [Related]
13. One-Pot Synthesis of Active Carbon-Supported Size-Tunable Ni Li H; Li G; Liu Z ACS Omega; 2019 Jan; 4(1):2075-2080. PubMed ID: 31459456 [TBL] [Abstract][Full Text] [Related]
14. Synthesis, Physical Properties and Electrocatalytic Performance of Nickel Phosphides for Hydrogen Evolution Reaction of Water Electrolysis. Liu G; Hou F; Peng S; Wang X; Fang B Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36079972 [TBL] [Abstract][Full Text] [Related]
15. Application of phase-pure nickel phosphide nanoparticles as cathode catalysts for hydrogen production in microbial electrolysis cells. Kim KY; Habas SE; Schaidle JA; Logan BE Bioresour Technol; 2019 Dec; 293():122067. PubMed ID: 31499330 [TBL] [Abstract][Full Text] [Related]
17. Triphenylphosphine-Assisted Transformation of NiS to Ni Ayom GE; Khan MD; Shombe GB; Choi J; Gupta RK; van Zyl WE; Revaprasadu N Inorg Chem; 2021 Aug; 60(15):11374-11384. PubMed ID: 34260204 [TBL] [Abstract][Full Text] [Related]
18. A pillar-layered Ni Ni Q; Zhu Z; Wang Y; Jiang C; Wang M; Zhang X Dalton Trans; 2024 May; 53(20):8732-8739. PubMed ID: 38712507 [TBL] [Abstract][Full Text] [Related]
19. Tunable Synthesis of Metal-Rich and Phosphorus-Rich Nickel Phosphides and Their Comparative Evaluation as Hydrogen Evolution Electrocatalysts. Liyanage IA; Flores AV; Gillan EG Inorg Chem; 2023 Mar; 62(12):4947-4959. PubMed ID: 36898368 [TBL] [Abstract][Full Text] [Related]
20. Plasma-Assisted Synthesis of NiCoP for Efficient Overall Water Splitting. Liang H; Gandi AN; Anjum DH; Wang X; Schwingenschlögl U; Alshareef HN Nano Lett; 2016 Dec; 16(12):7718-7725. PubMed ID: 27960455 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]