These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38860495)

  • 41. Construction of DNA nanotubes with controllable diameters and patterns using hierarchical DNA sub-tiles.
    Shi X; Wu X; Song T; Li X
    Nanoscale; 2016 Aug; 8(31):14785-92. PubMed ID: 27444699
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fluorous-Directed Assembly of DNA Origami Nanostructures.
    Zou J; Stammers AC; Taladriz-Sender A; Withers JM; Christie I; Santana Vega M; Aekbote BL; Peveler WJ; Rusling DA; Burley GA; Clark AW
    ACS Nano; 2023 Jan; 17(1):752-759. PubMed ID: 36537902
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structural DNA nanotechnology: from design to applications.
    Zadegan RM; Norton ML
    Int J Mol Sci; 2012; 13(6):7149-7162. PubMed ID: 22837684
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Assembly of Gold Nanorods into Chiral Plasmonic Metamolecules Using DNA Origami Templates.
    Huang Y; Nguyen MK; Kuzyk A
    J Vis Exp; 2019 Mar; (145):. PubMed ID: 30907870
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Uncovering the self-assembly of DNA nanostructures by thermodynamics and kinetics.
    Wei X; Nangreave J; Liu Y
    Acc Chem Res; 2014 Jun; 47(6):1861-70. PubMed ID: 24851996
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Minimalist Design of Wireframe DNA Nanotubes: Tunable Geometry, Size, Chirality, and Dynamics.
    Luo X; Saliba D; Yang T; Gentile S; Mori K; Islas P; Das T; Bagheri N; Porchetta A; Guarne A; Cosa G; Sleiman HF
    Angew Chem Int Ed Engl; 2023 Oct; 62(44):e202309869. PubMed ID: 37610293
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Programming Self-Assembly of DNA Origami Honeycomb Two-Dimensional Lattices and Plasmonic Metamaterials.
    Wang P; Gaitanaros S; Lee S; Bathe M; Shih WM; Ke Y
    J Am Chem Soc; 2016 Jun; 138(24):7733-40. PubMed ID: 27224641
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Two-Dimensional DNA Origami Lattices Assembled on Lipid Bilayer Membranes.
    Suzuki Y; Sugiyama H; Endo M
    Methods Mol Biol; 2023; 2639():83-90. PubMed ID: 37166712
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Diverse Chiral Nanotubes Assembled from Identical DNA Strands.
    Xie C; Chen Z; Chen K; Hu Y; Xu F; Pan L
    Nano Lett; 2024 Jul; 24(28):8696-8701. PubMed ID: 38967319
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Automated Synthesis of DNA Nanostructures.
    Islas P; Platnich CM; Gidi Y; Karimi R; Ginot L; Saliba D; Luo X; Cosa G; Sleiman HF
    Adv Mater; 2024 Jul; ():e2403477. PubMed ID: 39049795
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components.
    Ong LL; Hanikel N; Yaghi OK; Grun C; Strauss MT; Bron P; Lai-Kee-Him J; Schueder F; Wang B; Wang P; Kishi JY; Myhrvold C; Zhu A; Jungmann R; Bellot G; Ke Y; Yin P
    Nature; 2017 Dec; 552(7683):72-77. PubMed ID: 29219968
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Understanding the Elementary Steps in DNA Tile-Based Self-Assembly.
    Jiang S; Hong F; Hu H; Yan H; Liu Y
    ACS Nano; 2017 Sep; 11(9):9370-9381. PubMed ID: 28813590
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Assembly of a DNA Origami Chinese Knot by Only 15% of the Staple Strands.
    He K; Li Z; Liu L; Zheng M; Mao C
    Chembiochem; 2020 Aug; 21(15):2132-2136. PubMed ID: 32196869
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Programmable DNA tile self-assembly using a hierarchical sub-tile strategy.
    Shi X; Lu W; Wang Z; Pan L; Cui G; Xu J; LaBean TH
    Nanotechnology; 2014 Feb; 25(7):075602. PubMed ID: 24451169
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Creation of ordered 3D tubes out of DNA origami lattices.
    Parikka JM; Järvinen H; Sokołowska K; Ruokolainen V; Markešević N; Natarajan AK; Vihinen-Ranta M; Kuzyk A; Tapio K; Toppari JJ
    Nanoscale; 2023 May; 15(17):7772-7780. PubMed ID: 37057647
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electron Microscopic Visualization of Protein Assemblies on Flattened DNA Origami.
    Mallik L; Dhakal S; Nichols J; Mahoney J; Dosey AM; Jiang S; Sunahara RK; Skiniotis G; Walter NG
    ACS Nano; 2015 Jul; 9(7):7133-41. PubMed ID: 26149412
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Two-Dimensional Seeded Self-Assembly of a Complex Hierarchical Perylene-Based Heterostructure.
    Liu Y; Peng C; Xiong W; Zhang Y; Gong Y; Che Y; Zhao J
    Angew Chem Int Ed Engl; 2017 Sep; 56(38):11380-11384. PubMed ID: 28703456
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Active Self-Assembly of Train-Shaped DNA Nanostructures via Catalytic Hairpin Assembly Reactions.
    Xing C; Dai J; Huang Y; Lin Y; Zhang KL; Lu C; Yang H
    Small; 2019 Jul; 15(27):e1901795. PubMed ID: 31120190
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Growth Rate and Thermal Properties of DNA Origami Filaments.
    Stenke LJ; Saccà B
    Nano Lett; 2022 Nov; 22(22):8818-8826. PubMed ID: 36327970
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Beyond DNA origami: the unfolding prospects of nucleic acid nanotechnology.
    Michelotti N; Johnson-Buck A; Manzo AJ; Walter NG
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2012; 4(2):139-52. PubMed ID: 22131292
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.