These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 38860661)

  • 21. A Review on the Construction of Carbon-Based Metal Compound Composite Cathode Materials for Room Temperature Sodium-Sulfur Batteries.
    Wang X; Guo D; Yang L; Jin M; Chen X; Wang S
    Front Chem; 2022; 10():928429. PubMed ID: 35755245
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Strategy of Enhancing the Volumetric Energy Density for Lithium-Sulfur Batteries.
    Liu YT; Liu S; Li GR; Gao XP
    Adv Mater; 2021 Feb; 33(8):e2003955. PubMed ID: 33368710
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ni
    Liu G; Zhang Z; Tian W; Chen W; Xi B; Li H; Feng J; Xiong S
    Nanoscale; 2020 May; 12(19):10760-10770. PubMed ID: 32388545
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Versatile Separators Toward Advanced Lithium-Sulfur Batteries: Status, Recent Progress, Challenges and Perspective.
    Zhang M; Zhang X; Liu S; Hou W; Lu Y; Hou L; Luo Y; Liu Y; Yuan C
    ChemSusChem; 2024 May; ():e202400538. PubMed ID: 38763902
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent advances in cathode materials for rechargeable lithium-sulfur batteries.
    Li F; Liu Q; Hu J; Feng Y; He P; Ma J
    Nanoscale; 2019 Sep; 11(33):15418-15439. PubMed ID: 31408082
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lithium-Sulfur Battery Cathode Design: Tailoring Metal-Based Nanostructures for Robust Polysulfide Adsorption and Catalytic Conversion.
    Ng SF; Lau MYL; Ong WJ
    Adv Mater; 2021 Dec; 33(50):e2008654. PubMed ID: 33811420
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functionalized graphene-based cathode for highly reversible lithium-sulfur batteries.
    Kim JW; Ocon JD; Park DW; Lee J
    ChemSusChem; 2014 May; 7(5):1265-73. PubMed ID: 24464910
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Harnessing the unique properties of 2D materials for advanced lithium-sulfur batteries.
    Li B; Xu H; Ma Y; Yang S
    Nanoscale Horiz; 2019 Jan; 4(1):77-98. PubMed ID: 32254146
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Catalytic VS
    Deng Y; Tang W; Zhu Y; Ma J; Zhou M; Shi Y; Yan P; Liu R
    Small Methods; 2023 Jun; 7(6):e2300186. PubMed ID: 37093188
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A special core-shell ZnS-CNTs/S@NH cathode constructed to elevate electrochemical performances of lithium-sulfur batteries.
    Shi T; Zhao C; Zhou Y; Yin H; Song C; Qin L; Wang Z; Shao H; Yu K
    J Colloid Interface Sci; 2021 Oct; 599():416-426. PubMed ID: 33962202
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Superhierarchical Conductive Framework Implanted with Nickel/Graphitic Carbon Nanocages as Sulfur/Lithium Metal Dual-Role Hosts for Li-S Batteries.
    Wei Y; Wang Y; Zhang X; Wang B; Wang Q; Wu N; Zhang Y; Wu H
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35058-35070. PubMed ID: 32662619
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Bimetallic Organic Framework with Mn in MIL-101(Cr) for Lithium-Sulfur Batteries.
    Chen S; Zhang Z; Wang J; Dong P
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241423
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent Progress for Concurrent Realization of Shuttle-Inhibition and Dendrite-Free Lithium-Sulfur Batteries.
    Yao W; Xu J; Ma L; Lu X; Luo D; Qian J; Zhan L; Manke I; Yang C; Adelhelm P; Chen R
    Adv Mater; 2023 Aug; 35(32):e2212116. PubMed ID: 36961362
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 2 D Materials for Inhibiting the Shuttle Effect in Advanced Lithium-Sulfur Batteries.
    Ali T; Yan C
    ChemSusChem; 2020 Mar; 13(6):1447-1479. PubMed ID: 31436389
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetic Promoters for Sulfur Cathodes in Lithium-Sulfur Batteries.
    Zhao M; Peng HJ; Li BQ; Huang JQ
    Acc Chem Res; 2024 Feb; ():. PubMed ID: 38319810
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Graphene-Based Nanomaterials as the Cathode for Lithium-Sulfur Batteries.
    Tian J; Xing F; Gao Q
    Molecules; 2021 Apr; 26(9):. PubMed ID: 33923027
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Iodine-doped carbon nanotubes boosting the adsorption effect and conversion kinetics of lithium-sulfur batteries.
    Jiang Y; Li W; Li X; Liao Y; Liu X; Yu J; Xia S; Li W; Zhao B; Zhang J
    J Colloid Interface Sci; 2024 Oct; 672():287-298. PubMed ID: 38843681
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Understanding Conversion-Type Electrodes for Lithium Rechargeable Batteries.
    Yu SH; Feng X; Zhang N; Seok J; Abruña HD
    Acc Chem Res; 2018 Feb; 51(2):273-281. PubMed ID: 29373023
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coordinated Immobilization and Rapid Conversion of Polysulfide Enabled by a Hollow Metal Oxide/Sulfide/Nitrogen-Doped Carbon Heterostructure for Long-Cycle-Life Lithium-Sulfur Batteries.
    Liu H; Yang X; Jin B; Cui M; Li Y; Li Q; Li L; Sheng Q; Lang X; Jin E; Jeong S; Jiang Q
    Small; 2023 Aug; 19(32):e2300950. PubMed ID: 37066725
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.