These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38860833)

  • 21. Reconstructing a recycling and nonauxotroph biosynthetic pathway in Escherichia coli toward highly efficient production of L-citrulline.
    Jiang S; Wang D; Wang R; Zhao C; Ma Q; Wu H; Xie X
    Metab Eng; 2021 Nov; 68():220-231. PubMed ID: 34688880
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chromosome engineering of Escherichia coli for constitutive production of salvianic acid A.
    Zhou L; Ding Q; Jiang GZ; Liu ZN; Wang HY; Zhao GR
    Microb Cell Fact; 2017 May; 16(1):84. PubMed ID: 28511681
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Production of ergothioneine by Methylobacterium species.
    Alamgir KM; Masuda S; Fujitani Y; Fukuda F; Tani A
    Front Microbiol; 2015; 6():1185. PubMed ID: 26579093
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent Strategies for the Biosynthesis of Ergothioneine.
    Qiu Y; Chen Z; Su E; Wang L; Sun L; Lei P; Xu H; Li S
    J Agric Food Chem; 2021 Nov; 69(46):13682-13690. PubMed ID: 34757754
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhancing tryptophan production by balancing precursors in Escherichia coli.
    Guo L; Ding S; Liu Y; Gao C; Hu G; Song W; Liu J; Chen X; Liu L
    Biotechnol Bioeng; 2022 Mar; 119(3):983-993. PubMed ID: 34936092
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient Fermentative Production of β-Alanine from Glucose through Multidimensional Engineering of
    Zhang Y; Zhang G; Zhang H; Tian Y; Li J; Yun J; Zabed HM; Qi X
    J Agric Food Chem; 2024 Jun; 72(25):14274-14283. PubMed ID: 38867465
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The evolutionary history of the genes involved in the biosynthesis of the antioxidant ergothioneine.
    Jones GW; Doyle S; Fitzpatrick DA
    Gene; 2014 Oct; 549(1):161-70. PubMed ID: 25068406
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integrated strain engineering and bioprocessing strategies for high-level bio-based production of 3-hydroxyvalerate in Escherichia coli.
    Miscevic D; Mao JY; Kefale T; Abedi D; Huang CC; Moo-Young M; Chou CP
    Appl Microbiol Biotechnol; 2020 Jun; 104(12):5259-5272. PubMed ID: 32291486
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Escherichia coli coculture for de novo production of esters derived of methyl-branched alcohols and multi-methyl branched fatty acids.
    Bracalente F; Sabatini M; Arabolaza A; Gramajo H
    Microb Cell Fact; 2022 Jan; 21(1):10. PubMed ID: 35033081
    [TBL] [Abstract][Full Text] [Related]  

  • 30. L-Fucose production by engineered Escherichia coli.
    Liu JJ; Lee JW; Yun EJ; Jung SM; Seo JH; Jin YS
    Biotechnol Bioeng; 2019 Apr; 116(4):904-911. PubMed ID: 30597526
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fermentation and Metabolic Pathway Optimization to De Novo Synthesize (2S)-Naringenin in
    Zhou S; Hao T; Zhou J
    J Microbiol Biotechnol; 2020 Oct; 30(10):1574-1582. PubMed ID: 32830192
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rational design and metabolic analysis of Escherichia coli for effective production of L-tryptophan at high concentration.
    Chen L; Zeng AP
    Appl Microbiol Biotechnol; 2017 Jan; 101(2):559-568. PubMed ID: 27599980
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly efficient production of ectoine via an optimized combination of precursor metabolic modules in Escherichia coli BL21.
    Xu S; Zhang B; Chen W; Ye K; Shen J; Liu P; Wu J; Wang H; Chu X
    Bioresour Technol; 2023 Dec; 390():129803. PubMed ID: 37758030
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolic Engineering of
    Chen J; Guo L; Zhang Y; Zhao M; Li M; Zhao Z; Qi Q; Xian M; Liu M; Zhao G
    J Agric Food Chem; 2024 Jul; 72(30):16848-16859. PubMed ID: 39024463
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improved L-ornithine production in Corynebacterium crenatum by introducing an artificial linear transacetylation pathway.
    Shu Q; Xu M; Li J; Yang T; Zhang X; Xu Z; Rao Z
    J Ind Microbiol Biotechnol; 2018 Jun; 45(6):393-404. PubMed ID: 29728854
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolic engineering and optimization of the fermentation medium for vitamin B
    Li D; Fang H; Gai Y; Zhao J; Jiang P; Wang L; Wei Q; Yu D; Zhang D
    Bioprocess Biosyst Eng; 2020 Oct; 43(10):1735-1745. PubMed ID: 32399750
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate L-pipecolic acid in Escherichia coli.
    Ying H; Tao S; Wang J; Ma W; Chen K; Wang X; Ouyang P
    Microb Cell Fact; 2017 Mar; 16(1):52. PubMed ID: 28347340
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineering Methyltransferase and Sulfoxide Synthase for High-Yield Production of Ergothioneine.
    Zhang L; Tang J; Feng M; Chen S
    J Agric Food Chem; 2023 Jan; 71(1):671-679. PubMed ID: 36571834
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient Synthesis of Food-Derived Antioxidant l-Ergothioneine by Engineered
    Kim M; Jeong DW; Oh JW; Jeong HJ; Ko YJ; Park SE; Han SO
    J Agric Food Chem; 2022 Feb; 70(5):1516-1524. PubMed ID: 35088592
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Co-augmentation of a transport gene mfsT1 in Mycolicibacterium neoaurum with genome engineering to enhance ergothioneine production.
    Ding YX; Chen JW; Ke J; Hu FY; Wen JC; Dong YG; Wang FQ; Xiong LB
    J Basic Microbiol; 2024 Apr; 64(4):e2300705. PubMed ID: 38253966
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.