These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38860911)

  • 1. Global Distribution of Mercury in Foliage Predicted by Machine Learning.
    Chen L; Zhou J; Guo L; Bian X; Xu Z; Chen Q; Wen SH; Wang K; Liu YR
    Environ Sci Technol; 2024 Sep; 58(35):15629-15637. PubMed ID: 38860911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global Mercury Assimilation by Vegetation.
    Zhou J; Obrist D
    Environ Sci Technol; 2021 Oct; 55(20):14245-14257. PubMed ID: 34617727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Foliar mercury accumulation and exchange for three tree species.
    Millhollen AG; Gustin MS; Obrist D
    Environ Sci Technol; 2006 Oct; 40(19):6001-6. PubMed ID: 17051791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using foliar and forest floor mercury concentrations to assess spatial patterns of mercury deposition.
    Blackwell BD; Driscoll CT
    Environ Pollut; 2015 Jul; 202():126-34. PubMed ID: 25818092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Foliar exchange of mercury as a function of soil and air mercury concentrations.
    Ericksen JA; Gustin MS
    Sci Total Environ; 2004 May; 324(1-3):271-9. PubMed ID: 15081712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mercury accumulation in grass and forb species as a function of atmospheric carbon dioxide concentrations and mercury exposures in air and soil.
    Millhollen AG; Obrist D; Gustin MS
    Chemosphere; 2006 Oct; 65(5):889-97. PubMed ID: 16631233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stable Isotope Evidence Shows Re-emission of Elemental Mercury Vapor Occurring after Reductive Loss from Foliage.
    Yuan W; Sommar J; Lin CJ; Wang X; Li K; Liu Y; Zhang H; Lu Z; Wu C; Feng X
    Environ Sci Technol; 2019 Jan; 53(2):651-660. PubMed ID: 30501171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concentrations and content of mercury in bark, wood, and leaves in hardwoods and conifers in four forested sites in the northeastern USA.
    Yang Y; Yanai RD; Driscoll CT; Montesdeoca M; Smith KT
    PLoS One; 2018; 13(4):e0196293. PubMed ID: 29684081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Buffering effect of global vegetation on the air-land exchange of mercury: Insights from a novel terrestrial mercury model based on CESM2-CLM5.
    Yuan T; Zhang P; Song Z; Huang S; Wang X; Zhang Y
    Environ Int; 2023 Apr; 174():107904. PubMed ID: 37012193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A tale of three cities: Mercury in urban deciduous foliage and soils across land-uses in Poughkeepsie NY, Hartford CT, and Springfield MA USA.
    Richardson JB; Moore L
    Sci Total Environ; 2020 May; 715():136869. PubMed ID: 32041042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of mercury exchange between forest canopy vegetation and the atmosphere using a new dynamic chamber.
    Graydon JA; St Louis VL; Lindberg SE; Hintelmann H; Krabbenhoft DP
    Environ Sci Technol; 2006 Aug; 40(15):4680-8. PubMed ID: 16913124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of Global Mercury Deposition through Litterfall.
    Wang X; Bao Z; Lin CJ; Yuan W; Feng X
    Environ Sci Technol; 2016 Aug; 50(16):8548-57. PubMed ID: 27418119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use.
    Obrist D; Kirk JL; Zhang L; Sunderland EM; Jiskra M; Selin NE
    Ambio; 2018 Mar; 47(2):116-140. PubMed ID: 29388126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of mercury in foliage, litter and soil profiles in forests of the Qinling Mountains, China.
    Ma H; Cheng H; Guo F; Zhang L; Tang S; Yang Z; Peng M
    Environ Res; 2022 Aug; 211():113017. PubMed ID: 35217011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Foliar mercury content from tropical trees and its correlation with physiological parameters in situ.
    Teixeira DC; Lacerda LD; Silva-Filho EV
    Environ Pollut; 2018 Nov; 242(Pt B):1050-1057. PubMed ID: 30096543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of uptake and retention of atmospheric Hg(II) by boreal forest plants using stable Hg isotopes.
    Graydon JA; St Louis VL; Hintelmann H; Lindberg SE; Sandilands KA; Rudd JW; Kelly CA; Tate MT; Krabbenhoft DP; Lehnherr I
    Environ Sci Technol; 2009 Jul; 43(13):4960-6. PubMed ID: 19673292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping the forest litterfall mercury deposition in China.
    Xu Z; Wang Z; Zhang X
    Sci Total Environ; 2022 Sep; 839():156288. PubMed ID: 35644398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A synthesis of terrestrial mercury in the western United States: Spatial distribution defined by land cover and plant productivity.
    Obrist D; Pearson C; Webster J; Kane T; Lin CJ; Aiken GR; Alpers CN
    Sci Total Environ; 2016 Oct; 568():522-535. PubMed ID: 26775833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating uptake and translocation of mercury species by sawgrass ( Cladium jamaicense ) using a stable isotope tracer technique.
    Mao Y; Li Y; Richards J; Cai Y
    Environ Sci Technol; 2013 Sep; 47(17):9678-84. PubMed ID: 23885899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Litter mercury deposition in the Amazonian rainforest.
    Fostier AH; Melendez-Perez JJ; Richter L
    Environ Pollut; 2015 Nov; 206():605-10. PubMed ID: 26312742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.