BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38861615)

  • 1. MCTP1 increases the malignancy of androgen-deprived prostate cancer cells by inducing neuroendocrine differentiation and EMT.
    Liu YN; Chen WY; Yeh HL; Chen WH; Jiang KC; Li HR; Dung PVT; Chen ZQ; Lee WJ; Hsiao M; Huang J; Wen YC
    Sci Signal; 2024 Jun; 17(840):eadc9142. PubMed ID: 38861615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Androgen deprivation-induced ZBTB46-PTGS1 signaling promotes neuroendocrine differentiation of prostate cancer.
    Chen WY; Zeng T; Wen YC; Yeh HL; Jiang KC; Chen WH; Zhang Q; Huang J; Liu YN
    Cancer Lett; 2019 Jan; 440-441():35-46. PubMed ID: 30312731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histone demethylase PHF8 drives neuroendocrine prostate cancer progression by epigenetically upregulating FOXA2.
    Liu Q; Pang J; Wang LA; Huang Z; Xu J; Yang X; Xie Q; Huang Y; Tang T; Tong D; Liu G; Wang L; Zhang D; Ma Q; Xiao H; Lan W; Qin J; Jiang J
    J Pathol; 2021 Jan; 253(1):106-118. PubMed ID: 33009820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The β
    Braadland PR; Ramberg H; Grytli HH; Urbanucci A; Nielsen HK; Guldvik IJ; Engedal A; Ketola K; Wang W; Svindland A; Mills IG; Bjartell A; Taskén KA
    Mol Cancer Res; 2019 Nov; 17(11):2154-2168. PubMed ID: 31395667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypoxia induces epithelial-mesenchymal transition via activation of SNAI1 by hypoxia-inducible factor -1α in hepatocellular carcinoma.
    Zhang L; Huang G; Li X; Zhang Y; Jiang Y; Shen J; Liu J; Wang Q; Zhu J; Feng X; Dong J; Qian C
    BMC Cancer; 2013 Mar; 13():108. PubMed ID: 23496980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wnt-11 promotes neuroendocrine-like differentiation, survival and migration of prostate cancer cells.
    Uysal-Onganer P; Kawano Y; Caro M; Walker MM; Diez S; Darrington RS; Waxman J; Kypta RM
    Mol Cancer; 2010 Mar; 9():55. PubMed ID: 20219091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Siah2-dependent concerted activity of HIF and FoxA2 regulates formation of neuroendocrine phenotype and neuroendocrine prostate tumors.
    Qi J; Nakayama K; Cardiff RD; Borowsky AD; Kaul K; Williams R; Krajewski S; Mercola D; Carpenter PM; Bowtell D; Ronai ZA
    Cancer Cell; 2010 Jul; 18(1):23-38. PubMed ID: 20609350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TRPM4 channel is involved in regulating epithelial to mesenchymal transition, migration, and invasion of prostate cancer cell lines.
    Sagredo AI; Sagredo EA; Pola V; Echeverría C; Andaur R; Michea L; Stutzin A; Simon F; Marcelain K; Armisén R
    J Cell Physiol; 2019 Mar; 234(3):2037-2050. PubMed ID: 30343491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Splice Variant of the Inhibitor of Growth 3 Lacks the Plant Homeodomain and Regulates Epithelial-Mesenchymal Transition in Prostate Cancer Cells.
    Melekhova A; Leeder M; Pungsrinont T; Schmäche T; Kallenbach J; Ehsani M; Mirzakhani K; Rasa SMM; Neri F; Baniahmad A
    Biomolecules; 2021 Aug; 11(8):. PubMed ID: 34439818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Independence of HIF1a and androgen signaling pathways in prostate cancer.
    Tran MGB; Bibby BAS; Yang L; Lo F; Warren AY; Shukla D; Osborne M; Hadfield J; Carroll T; Stark R; Scott H; Ramos-Montoya A; Massie C; Maxwell P; West CML; Mills IG; Neal DE
    BMC Cancer; 2020 May; 20(1):469. PubMed ID: 32450824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leukemia Inhibitory Factor Promotes Castration-resistant Prostate Cancer and Neuroendocrine Differentiation by Activated ZBTB46.
    Liu YN; Niu S; Chen WY; Zhang Q; Tao Y; Chen WH; Jiang KC; Chen X; Shi H; Liu A; Li J; Li Y; Lee YC; Zhang X; Huang J
    Clin Cancer Res; 2019 Jul; 25(13):4128-4140. PubMed ID: 30962287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HIF-1α induces the epithelial-mesenchymal transition in gastric cancer stem cells through the Snail pathway.
    Yang SW; Zhang ZG; Hao YX; Zhao YL; Qian F; Shi Y; Li PA; Liu CY; Yu PW
    Oncotarget; 2017 Feb; 8(6):9535-9545. PubMed ID: 28076840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resveratrol induces depletion of TRAF6 and suppresses prostate cancer cell proliferation and migration.
    Khusbu FY; Zhou X; Roy M; Chen FZ; Cao Q; Chen HC
    Int J Biochem Cell Biol; 2020 Jan; 118():105644. PubMed ID: 31712163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional regulation of FoxM1 by HIF‑1α mediates hypoxia‑induced EMT in prostate cancer.
    Tang C; Liu T; Wang K; Wang X; Xu S; He D; Zeng J
    Oncol Rep; 2019 Oct; 42(4):1307-1318. PubMed ID: 31364741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MicroRNA-147b induces neuroendocrine differentiation of prostate cancer cells by targeting ribosomal protein RPS15A.
    Natani S; Ramakrishna M; Nallavolu T; Ummanni R
    Prostate; 2023 Jul; 83(10):936-949. PubMed ID: 37069746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AKT/GSK-3β regulates stability and transcription of snail which is crucial for bFGF-induced epithelial-mesenchymal transition of prostate cancer cells.
    Liu ZC; Wang HS; Zhang G; Liu H; Chen XH; Zhang F; Chen DY; Cai SH; Du J
    Biochim Biophys Acta; 2014 Oct; 1840(10):3096-105. PubMed ID: 25088797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting the Nuclear Cathepsin L CCAAT Displacement Protein/Cut Homeobox Transcription Factor-Epithelial Mesenchymal Transition Pathway in Prostate and Breast Cancer Cells with the Z-FY-CHO Inhibitor.
    Burton LJ; Dougan J; Jones J; Smith BN; Randle D; Henderson V; Odero-Marah VA
    Mol Cell Biol; 2017 Mar; 37(5):. PubMed ID: 27956696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FOXA2 drives lineage plasticity and KIT pathway activation in neuroendocrine prostate cancer.
    Han M; Li F; Zhang Y; Dai P; He J; Li Y; Zhu Y; Zheng J; Huang H; Bai F; Gao D
    Cancer Cell; 2022 Nov; 40(11):1306-1323.e8. PubMed ID: 36332622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting the SPOCK1-snail/slug axis-mediated epithelial-to-mesenchymal transition by apigenin contributes to repression of prostate cancer metastasis.
    Chien MH; Lin YW; Wen YC; Yang YC; Hsiao M; Chang JL; Huang HC; Lee WJ
    J Exp Clin Cancer Res; 2019 Jun; 38(1):246. PubMed ID: 31182131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nerve growth factor interacts with CHRM4 and promotes neuroendocrine differentiation of prostate cancer and castration resistance.
    Chen WY; Wen YC; Lin SR; Yeh HL; Jiang KC; Chen WH; Lin YS; Zhang Q; Liew PL; Hsiao M; Huang J; Liu YN
    Commun Biol; 2021 Jan; 4(1):22. PubMed ID: 33398073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.