These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38861760)

  • 1. Efficient, quick, and low-carbon removal mechanism of microplastics based on integrated gel coagulation-spontaneous flotation process.
    Li P; Zhang J; Shen Y; Feng X; Jia W; Liu M; Zhao S
    Water Res; 2024 Aug; 259():121906. PubMed ID: 38861760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The suitability and mechanism of polyaluminum-titanium chloride composite coagulant (PATC) for polystyrene microplastic removal: Structural characterization and theoretical calculation.
    Liu B; Gao Y; Yue Q; Guo K; Gao B
    Water Res; 2023 Apr; 232():119690. PubMed ID: 36758354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving nanoplastic removal by coagulation: Impact mechanism of particle size and water chemical conditions.
    Zhang Y; Wang X; Li Y; Wang H; Shi Y; Li Y; Zhang Y
    J Hazard Mater; 2022 Mar; 425():127962. PubMed ID: 34894513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of enteromorpha polysaccharides as coagulant aid in the simultaneous removal of CuO nanoparticles and Cu
    Luo Y; Gao B; Yue Q; Li R
    Chemosphere; 2018 Aug; 204():492-500. PubMed ID: 29679870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced removal of polyethylene terephthalate microplastics through polyaluminum chloride coagulation with three typical coagulant aids.
    Zhang Y; Zhou G; Yue J; Xing X; Yang Z; Wang X; Wang Q; Zhang J
    Sci Total Environ; 2021 Dec; 800():149589. PubMed ID: 34399346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of microplastics from secondary wastewater treatment plant effluent by coagulation/flocculation with iron, aluminum and polyamine-based chemicals.
    Rajala K; Grönfors O; Hesampour M; Mikola A
    Water Res; 2020 Sep; 183():116045. PubMed ID: 32777592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and application of gel coagulation-spontaneous flotation integrated process in water treatment: "Clouds in water".
    Zhang J; Yan Y; Jia W; Yang W; Wang Q; Zhao S
    Water Res; 2023 Sep; 243():120407. PubMed ID: 37516081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding and characteristics of coagulation removal of composite pollution of microplastic and norfloxacin during water treatment.
    He J; Zhang Y; Ni F; Tian D; Zhang Y; Long L; He Y; Chen C; Zou J
    Sci Total Environ; 2022 Jul; 831():154826. PubMed ID: 35341866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in microplastic removal from drinking water by coagulation: Removal mechanisms and influencing factors.
    Mao Y; Hu Z; Li H; Zheng H; Yang S; Yu W; Tang B; Yang H; He R; Guo W; Ye K; Yang A; Zhang S
    Environ Pollut; 2024 May; 349():123863. PubMed ID: 38565391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coagulation behavior and floc characteristics of a novel composite poly-ferric aluminum chloride-polydimethyl diallylammonium chloride coagulant with different OH/(Fe
    Sun C; Qiu J; Zhang Z; Marhaba TF; Zhang Y
    Water Sci Technol; 2016 Oct; 74(7):1636-1643. PubMed ID: 27763344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient removal of nano- and micro- sized plastics using a starch-based coagulant in conjunction with polysilicic acid.
    Hu P; Su K; Sun Y; Li P; Cai J; Yang H
    Sci Total Environ; 2022 Dec; 850():157829. PubMed ID: 35932863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The removal of microplastics from water by coagulation: A comprehensive review.
    Tang W; Li H; Fei L; Wei B; Zhou T; Zhang H
    Sci Total Environ; 2022 Dec; 851(Pt 1):158224. PubMed ID: 36007643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions between magnetic particles and polyaluminum chloride on the coagulation behavior in humic acid-kaolin synthetic water treatment.
    Lv M; Liu T; Chen F; Zhang Z; Li D; Sun M; Feng Y
    Environ Res; 2021 Jun; 197():111093. PubMed ID: 33812872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption interactions between typical microplastics and enrofloxacin: Relevant contributions to the mechanism.
    Li X; Jiang H; Zhu L; Tang J; Liu Z; Dai Y
    Chemosphere; 2024 Mar; 351():141181. PubMed ID: 38211798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of a novel polytitanium chloride coagulant with polyaluminium chloride: coagulation performance and floc characteristics.
    Zhao YX; Phuntsho S; Gao BY; Yang YZ; Kim JH; Shon HK
    J Environ Manage; 2015 Jan; 147():194-202. PubMed ID: 25291677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A modified coagulation-ultrafiltration process for silver nanoparticles removal and membrane fouling mitigation: The role of laminarin.
    Zou Z; Gu Y; Yang W; Liu M; Han J; Zhao S
    Int J Biol Macromol; 2021 Mar; 172():241-249. PubMed ID: 33454322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the fragmentation of microplastics into nano-plastics and removal of nano/microplastics from wastewater using membrane, air flotation and nano-ferrofluid processes.
    Pramanik BK; Pramanik SK; Monira S
    Chemosphere; 2021 Nov; 282():131053. PubMed ID: 34098311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of powdered activated carbon on the coagulation-flocculation process in humic acid and humic acid-kaolin water treatment.
    Huang X; Wan Y; Shi B; Shi J
    Chemosphere; 2020 Jan; 238():124637. PubMed ID: 31470312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface change of microplastics in aquatic environment and the removal by froth flotation assisted with cationic and anionic surfactants.
    Jiang H; Bu J; Bian K; Su J; Wang Z; Sun H; Wang H; Zhang Y; Wang C
    Water Res; 2023 Apr; 233():119794. PubMed ID: 36868113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The removal efficiency and mechanism of microplastic enhancement by positive modification dissolved air flotation.
    Wang Y; Li Y; Tian L; Ju L; Liu Y
    Water Environ Res; 2021 May; 93(5):693-702. PubMed ID: 32363675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.