These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38861773)

  • 1. How can the recycling of power batteries for EVs be promoted in China? A multiparty cooperative game analysis.
    Wang Y; Dong B; Ge J
    Waste Manag; 2024 Sep; 186():64-76. PubMed ID: 38861773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the promotion of green technology innovation in the new energy vehicle industry: An evolutionary game analysis.
    Mao Y; Li P; Li Y
    Environ Sci Pollut Res Int; 2023 Jul; 30(33):81038-81054. PubMed ID: 37310599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How do government subsidies and consumers' low-carbon preference promote new energy vehicle diffusion? A tripartite evolutionary game based on energy vehicle manufacturers, the government and consumers.
    Shi Z; Cheng J
    Heliyon; 2023 Mar; 9(3):e14327. PubMed ID: 36967968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance evaluation of regulatory schemes for retired electric vehicle battery recycling within dual-recycle channels.
    Lin Y; Yu Z; Wang Y; Goh M
    J Environ Manage; 2023 Apr; 332():117354. PubMed ID: 36724597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the impact of nickel recycling from batteries on nickel demand during vehicle electrification in China from 2010 to 2050.
    Zhang H; Liu G; Li J; Qiao D; Zhang S; Li T; Guo X; Liu M
    Sci Total Environ; 2023 Feb; 859(Pt 1):159964. PubMed ID: 36372177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the EPR system for power battery recycling from a supply-side perspective: An evolutionary game analysis.
    He L; Sun B
    Waste Manag; 2022 Mar; 140():204-212. PubMed ID: 34840024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of end-of-life electric vehicle generation and analysis of the status and prospects of power battery recycling in China.
    Li Y; Liu Y; Chen Y; Huang S; Ju Y
    Waste Manag Res; 2022 Sep; 40(9):1424-1432. PubMed ID: 35212575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circular economy strategies for mitigating metals shortages in electric vehicle batteries under China's carbon-neutral target.
    Hu Z; Yu B; Daigo I; Tan J; Sun F; Zhang S
    J Environ Manage; 2024 Feb; 352():120079. PubMed ID: 38242028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-evolutionary simulation study of multiple stakeholders in the take-out waste recycling industry chain.
    Long R; Yang J; Chen H; Li Q; Fang W; Wang L
    J Environ Manage; 2019 Feb; 231():701-713. PubMed ID: 30396143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Green supply chain decision of discarded drugs recycling: Evolutionary game and strategy simulation.
    Wang C; Huang Z; Lian G
    PLoS One; 2023; 18(5):e0260235. PubMed ID: 37167323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current status and perspectives on recycling of end-of-life battery of electric vehicle in Korea (Republic of).
    Choi Y; Rhee SW
    Waste Manag; 2020 Apr; 106():261-270. PubMed ID: 32241694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative evaluation for recycling waste power batteries with different collection modes based on Stackelberg game.
    Sun Q; Chen H; Long R; Li Q; Huang H
    J Environ Manage; 2022 Jun; 312():114892. PubMed ID: 35305356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-stakeholder policy modeling for collection and recycling of spent portable battery waste.
    Gupta VK; Kaushal RK; Shukla SP
    Waste Manag Res; 2018 Jul; 36(7):577-593. PubMed ID: 29865967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vehicle Company's Decision-Making to Process Waste Batteries: A Game Research under the Influence of Different Government Subsidy Strategies.
    Zhan M; Chen Y
    Int J Environ Res Public Health; 2022 Oct; 19(21):. PubMed ID: 36360654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal number of charging station and pricing strategy for the electric vehicle with component commonality considering consumer range anxiety.
    Yu W; Zhang L; Lu R; Ma J
    PLoS One; 2023; 18(5):e0283320. PubMed ID: 37155615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The optimization of an EV decommissioned battery recycling network: A third-party approach.
    Wang C; Feng X; Woo S; Wood J; Yu S
    J Environ Manage; 2023 Dec; 348():119299. PubMed ID: 37862891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Literature Review on Power Battery Echelon Reuse and Recycling from a Circular Economy Perspective.
    Nie Y; Wang Y; Li L; Liao H
    Int J Environ Res Public Health; 2023 Feb; 20(5):. PubMed ID: 36901376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating the electric vehicle popularization trend in China after 2020 and its challenges in the recycling industry.
    Wang S; Yu J
    Waste Manag Res; 2021 Jun; 39(6):818-827. PubMed ID: 32883186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental impact assessment of second life and recycling for LiFePO
    Wang Y; Tang B; Shen M; Wu Y; Qu S; Hu Y; Feng Y
    J Environ Manage; 2022 Jul; 314():115083. PubMed ID: 35447455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategic exploration of battery waste management: A game-theoretic approach.
    Kaushal RK; Nema AK; Chaudhary J
    Waste Manag Res; 2015 Jul; 33(7):681-9. PubMed ID: 26060193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.