These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 38861988)

  • 1. GENIX enables comparative network analysis of single-cell RNA sequencing to reveal signatures of therapeutic interventions.
    Nouri N; Gaglia G; Mattoo H; de Rinaldis E; Savova V
    Cell Rep Methods; 2024 Jun; 4(6):100794. PubMed ID: 38861988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BootCellNet, a resampling-based procedure, promotes unsupervised identification of cell populations via robust inference of gene regulatory networks.
    Kumagai Y
    PLoS Comput Biol; 2024 Sep; 20(9):e1012480. PubMed ID: 39348410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. scPanel: a tool for automatic identification of sparse gene panels for generalizable patient classification using scRNA-seq datasets.
    Xie Y; Yang J; Ouyang JF; Petretto E
    Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39350339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sample processing and single cell RNA-sequencing of peripheral blood immune cells from COVID-19 patients.
    Yao C; Bora SA; Chen P; Goodridge HS; Gharib SA
    STAR Protoc; 2021 Jun; 2(2):100582. PubMed ID: 34002169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. No detectable alloreactive transcriptional responses under standard sample preparation conditions during donor-multiplexed single-cell RNA sequencing of peripheral blood mononuclear cells.
    McGinnis CS; Siegel DA; Xie G; Hartoularos G; Stone M; Ye CJ; Gartner ZJ; Roan NR; Lee SA
    BMC Biol; 2021 Jan; 19(1):10. PubMed ID: 33472616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative study on differential expression analysis methods for single-cell RNA sequencing data with small biological replicates: Based on single-cell transcriptional data of PBMCs from COVID-19 severe patients.
    Xue J; Zhou X; Yang J; Niu A
    PLoS One; 2024; 19(3):e0299358. PubMed ID: 38536877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust identification of perturbed cell types in single-cell RNA-seq data.
    Nicol PB; Paulson D; Qian G; Liu XS; Irizarry R; Sahu AD
    Nat Commun; 2024 Sep; 15(1):7610. PubMed ID: 39218971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An accessible, interactive GenePattern Notebook for analysis and exploration of single-cell transcriptomic data.
    Mah CK; Wenzel AT; Juarez EF; Tabor T; Reich MM; Mesirov JP
    F1000Res; 2018; 7():1306. PubMed ID: 31316748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrating single-cell RNA sequencing data to genome-wide association analysis data identifies significant cell types in influenza A virus infection and COVID-19.
    Zou Y; Sun X; Wang Y; Wang Y; Ye X; Tu J; Yu R; Huang P
    Brief Funct Genomics; 2024 Mar; 23(2):110-117. PubMed ID: 37340787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epigenetic Landscapes of Single-Cell Chromatin Accessibility and Transcriptomic Immune Profiles of T Cells in COVID-19 Patients.
    Li S; Wu B; Ling Y; Guo M; Qin B; Ren X; Wang C; Yang H; Chen L; Liao Y; Liu Y; Peng X; Xu C; Wang Z; Shen Y; Chen J; Liu L; Niu B; Zhu M; Liu L; Li F; Zhu T; Zhu Z; Zhou X; Lu H
    Front Immunol; 2021; 12():625881. PubMed ID: 33717140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Data Analysis in Single-Cell Transcriptome Sequencing.
    Gao S
    Methods Mol Biol; 2018; 1754():311-326. PubMed ID: 29536451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-Cell Transcriptome Analysis Highlights a Role for Neutrophils and Inflammatory Macrophages in the Pathogenesis of Severe COVID-19.
    Shaath H; Vishnubalaji R; Elkord E; Alajez NM
    Cells; 2020 Oct; 9(11):. PubMed ID: 33138195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Bayesian mixture model for clustering droplet-based single-cell transcriptomic data from population studies.
    Sun Z; Chen L; Xin H; Jiang Y; Huang Q; Cillo AR; Tabib T; Kolls JK; Bruno TC; Lafyatis R; Vignali DAA; Chen K; Ding Y; Hu M; Chen W
    Nat Commun; 2019 Apr; 10(1):1649. PubMed ID: 30967541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-level cellular and functional annotation of single-cell transcriptomes using scPipeline.
    Mikolajewicz N; Gacesa R; Aguilera-Uribe M; Brown KR; Moffat J; Han H
    Commun Biol; 2022 Oct; 5(1):1142. PubMed ID: 36307536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metacell-based differential expression analysis identifies cell type specific temporal gene response programs in COVID-19 patient PBMCs.
    O'Leary K; Zheng D
    NPJ Syst Biol Appl; 2024 Apr; 10(1):36. PubMed ID: 38580667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. scNPF: an integrative framework assisted by network propagation and network fusion for preprocessing of single-cell RNA-seq data.
    Ye W; Ji G; Ye P; Long Y; Xiao X; Li S; Su Y; Wu X
    BMC Genomics; 2019 May; 20(1):347. PubMed ID: 31068142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Data denoising with transfer learning in single-cell transcriptomics.
    Wang J; Agarwal D; Huang M; Hu G; Zhou Z; Ye C; Zhang NR
    Nat Methods; 2019 Sep; 16(9):875-878. PubMed ID: 31471617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-cell RNA-seq denoising using a deep count autoencoder.
    Eraslan G; Simon LM; Mircea M; Mueller NS; Theis FJ
    Nat Commun; 2019 Jan; 10(1):390. PubMed ID: 30674886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Network embedding-based representation learning for single cell RNA-seq data.
    Li X; Chen W; Chen Y; Zhang X; Gu J; Zhang MQ
    Nucleic Acids Res; 2017 Nov; 45(19):e166. PubMed ID: 28977434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-Cell Transcriptomics of Immune Cells: Cell Isolation and cDNA Library Generation for scRNA-Seq.
    Arsenio J
    Methods Mol Biol; 2020; 2184():1-18. PubMed ID: 32808214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.