These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 38862006)
1. Beyond stiffness: deciphering the role of viscoelasticity in cancer evolution and treatment response. Zubiarrain-Laserna A; Martínez-Moreno D; López de Andrés J; de Lara-Peña L; Guaresti O; Zaldua AM; Jiménez G; Marchal JA Biofabrication; 2024 Jul; 16(4):. PubMed ID: 38862006 [TBL] [Abstract][Full Text] [Related]
2. Viscoelastic hydrogels regulate adipose-derived mesenchymal stem cells for nucleus pulposus regeneration. Liu Y; Li L; Li X; Cherif H; Jiang S; Ghezelbash F; Weber MH; Juncker D; Li-Jessen NYK; Haglund L; Li J Acta Biomater; 2024 May; 180():244-261. PubMed ID: 38615812 [TBL] [Abstract][Full Text] [Related]
3. Translational mechanobiology: Designing synthetic hydrogel matrices for improved in vitro models and cell-based therapies. Huebsch N Acta Biomater; 2019 Aug; 94():97-111. PubMed ID: 31129361 [TBL] [Abstract][Full Text] [Related]
4. An in vitro model of fibrosis using crosslinked native extracellular matrix-derived hydrogels to modulate biomechanics without changing composition. Nizamoglu M; de Hilster RHJ; Zhao F; Sharma PK; Borghuis T; Harmsen MC; Burgess JK Acta Biomater; 2022 Jul; 147():50-62. PubMed ID: 35605955 [TBL] [Abstract][Full Text] [Related]
5. Cancer cells' ability to mechanically adjust to extracellular matrix stiffness correlates with their invasive potential. Wullkopf L; West AV; Leijnse N; Cox TR; Madsen CD; Oddershede LB; Erler JT Mol Biol Cell; 2018 Oct; 29(20):2378-2385. PubMed ID: 30091653 [TBL] [Abstract][Full Text] [Related]
6. Dynamic Hydrogels with Viscoelasticity and Tunable Stiffness for the Regulation of Cell Behavior and Fate. Zhang Y; Wang Z; Sun Q; Li Q; Li S; Li X Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512435 [TBL] [Abstract][Full Text] [Related]
7. Sequential modes of crosslinking tune viscoelasticity of cell-instructive hydrogels. Vining KH; Stafford A; Mooney DJ Biomaterials; 2019 Jan; 188():187-197. PubMed ID: 30366219 [TBL] [Abstract][Full Text] [Related]
8. Measuring mechanical cues for modeling the stromal matrix in 3D cell cultures. Srbova L; Arasalo O; Lehtonen AJ; Pokki J Soft Matter; 2024 Apr; 20(16):3483-3498. PubMed ID: 38587658 [TBL] [Abstract][Full Text] [Related]
10. Tuning Viscoelasticity in Alginate Hydrogels for 3D Cell Culture Studies. Charbonier F; Indana D; Chaudhuri O Curr Protoc; 2021 May; 1(5):e124. PubMed ID: 34000104 [TBL] [Abstract][Full Text] [Related]
11. The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells. Mierke CT Rep Prog Phys; 2019 Jun; 82(6):064602. PubMed ID: 30947151 [TBL] [Abstract][Full Text] [Related]
12. Brain maturation is associated with increasing tissue stiffness and decreasing tissue fluidity. Guo J; Bertalan G; Meierhofer D; Klein C; Schreyer S; Steiner B; Wang S; Vieira da Silva R; Infante-Duarte C; Koch S; Boehm-Sturm P; Braun J; Sack I Acta Biomater; 2019 Nov; 99():433-442. PubMed ID: 31449927 [TBL] [Abstract][Full Text] [Related]
13. Viscoelastic Biomaterials for Tissue Regeneration. Wu DT; Jeffreys N; Diba M; Mooney DJ Tissue Eng Part C Methods; 2022 Jul; 28(7):289-300. PubMed ID: 35442107 [TBL] [Abstract][Full Text] [Related]
14. Human lung extracellular matrix hydrogels resemble the stiffness and viscoelasticity of native lung tissue. de Hilster RHJ; Sharma PK; Jonker MR; White ES; Gercama EA; Roobeek M; Timens W; Harmsen MC; Hylkema MN; Burgess JK Am J Physiol Lung Cell Mol Physiol; 2020 Apr; 318(4):L698-L704. PubMed ID: 32048864 [TBL] [Abstract][Full Text] [Related]
15. Hyaluronan-based hydrogels as versatile tumor-like models: Tunable ECM and stiffness with genipin-crosslinking. Bonnesœur S; Morin-Grognet S; Thoumire O; Le Cerf D; Boyer O; Vannier JP; Labat B J Biomed Mater Res A; 2020 May; 108(5):1256-1268. PubMed ID: 32056374 [TBL] [Abstract][Full Text] [Related]
16. Characterizing and Engineering Biomimetic Materials for Viscoelastic Mechanotransduction Studies. Cacopardo L; Guazzelli N; Ahluwalia A Tissue Eng Part B Rev; 2022 Aug; 28(4):912-925. PubMed ID: 34555953 [TBL] [Abstract][Full Text] [Related]
17. The extracellular matrix viscoelasticity as a regulator of cell and tissue dynamics. Elosegui-Artola A Curr Opin Cell Biol; 2021 Oct; 72():10-18. PubMed ID: 33993058 [TBL] [Abstract][Full Text] [Related]
18. Stiffness assisted cell-matrix remodeling trigger 3D mechanotransduction regulatory programs. Kersey AL; Cheng DY; Deo KA; Dubell CR; Wang TC; Jaiswal MK; Kim MH; Murali A; Hargett SE; Mallick S; Lele TP; Singh I; Gaharwar AK Biomaterials; 2024 Apr; 306():122473. PubMed ID: 38335719 [TBL] [Abstract][Full Text] [Related]
19. Nonlinear elasticity of the lung extracellular microenvironment is regulated by macroscale tissue strain. Jorba I; Beltrán G; Falcones B; Suki B; Farré R; García-Aznar JM; Navajas D Acta Biomater; 2019 Jul; 92():265-276. PubMed ID: 31085362 [TBL] [Abstract][Full Text] [Related]
20. Influence of Hydrolyzed Polyacrylamide Hydrogel Stiffness on Podocyte Morphology, Phenotype, and Mechanical Properties. Abdallah M; Martin M; El Tahchi MR; Balme S; Faour WH; Varga B; Cloitre T; Páll O; Cuisinier FJG; Gergely C; Bassil MJ; Bechelany M ACS Appl Mater Interfaces; 2019 Sep; 11(36):32623-32632. PubMed ID: 31424195 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]