These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 38862192)
1. Effects of prime-boost strategies on the protective efficacy and immunogenicity of a PLGA (85:15)-encapsulated Chlamydia recombinant MOMP nanovaccine. Sahu R; Verma R; Egbo TE; Giambartolomei GH; Singh SR; Dennis VA Pathog Dis; 2024 Feb; 82():. PubMed ID: 38862192 [TBL] [Abstract][Full Text] [Related]
2. Encapsulation of Recombinant MOMP in Extended-Releasing PLGA 85:15 Nanoparticles Confer Protective Immunity Against a Sahu R; Dixit S; Verma R; Duncan SA; Smith L; Giambartolomei GH; Singh SR; Dennis VA Front Immunol; 2021; 12():660932. PubMed ID: 33936096 [TBL] [Abstract][Full Text] [Related]
3. Chlamydia trachomatis recombinant MOMP encapsulated in PLGA nanoparticles triggers primarily T helper 1 cellular and antibody immune responses in mice: a desirable candidate nanovaccine. Fairley SJ; Singh SR; Yilma AN; Waffo AB; Subbarayan P; Dixit S; Taha MA; Cambridge CD; Dennis VA Int J Nanomedicine; 2013; 8():2085-99. PubMed ID: 23785233 [TBL] [Abstract][Full Text] [Related]
4. The Verma R; Sahu R; Dixit S; Duncan SA; Giambartolomei GH; Singh SR; Dennis VA Front Immunol; 2018; 9():2369. PubMed ID: 30374357 [TBL] [Abstract][Full Text] [Related]
5. The cationic liposomal adjuvants CAF01 and CAF09 formulated with the major outer membrane protein elicit robust protection in mice against a Chlamydia muridarum respiratory challenge. Pal S; Tifrea DF; Follmann F; Andersen P; de la Maza LM Vaccine; 2017 Mar; 35(13):1705-1711. PubMed ID: 28238632 [TBL] [Abstract][Full Text] [Related]
6. A nanovaccine formulation of Chlamydia recombinant MOMP encapsulated in PLGA 85:15 nanoparticles augments CD4 Sahu R; Dixit S; Verma R; Duncan SA; Coats MT; Giambartolomei GH; Singh SR; Dennis VA Nanomedicine; 2020 Oct; 29():102257. PubMed ID: 32610072 [TBL] [Abstract][Full Text] [Related]
7. Vaccination with the recombinant major outer membrane protein elicits antibodies to the constant domains and induces cross-serovar protection against intranasal challenge with Chlamydia trachomatis. Tifrea DF; Ralli-Jain P; Pal S; de la Maza LM Infect Immun; 2013 May; 81(5):1741-50. PubMed ID: 23478318 [TBL] [Abstract][Full Text] [Related]
8. Induction of cross-serovar protection against genital chlamydial infection by a targeted multisubunit vaccination approach. Li W; Guentzel MN; Seshu J; Zhong G; Murthy AK; Arulanandam BP Clin Vaccine Immunol; 2007 Dec; 14(12):1537-44. PubMed ID: 17942608 [TBL] [Abstract][Full Text] [Related]
9. A vaccine formulated with a combination of TLR-2 and TLR-9 adjuvants and the recombinant major outer membrane protein elicits a robust immune response and significant protection against a Chlamydia muridarum challenge. Cheng C; Pal S; Tifrea D; Jia Z; de la Maza LM Microbes Infect; 2014 Mar; 16(3):244-52. PubMed ID: 24291713 [TBL] [Abstract][Full Text] [Related]
10. Protection against an intranasal challenge by vaccines formulated with native and recombinant preparations of the Chlamydia trachomatis major outer membrane protein. Sun G; Pal S; Weiland J; Peterson EM; de la Maza LM Vaccine; 2009 Aug; 27(36):5020-5. PubMed ID: 19446590 [TBL] [Abstract][Full Text] [Related]
11. Comparison of intranasal and transcutaneous immunization for induction of protective immunity against Chlamydia muridarum respiratory tract infection. Skelding KA; Hickey DK; Horvat JC; Bao S; Roberts KG; Finnie JM; Hansbro PM; Beagley KW Vaccine; 2006 Jan; 24(3):355-66. PubMed ID: 16153755 [TBL] [Abstract][Full Text] [Related]
12. Comparison of immune responses and protective efficacy of intranasal prime-boost immunization regimens using adenovirus-based and CpG/HH2 adjuvanted-subunit vaccines against genital Chlamydia muridarum infection. Brown TH; David J; Acosta-Ramirez E; Moore JM; Lee S; Zhong G; Hancock RE; Xing Z; Halperin SA; Wang J Vaccine; 2012 Jan; 30(2):350-60. PubMed ID: 22075089 [TBL] [Abstract][Full Text] [Related]
13. Liposome delivery of Chlamydia muridarum major outer membrane protein primes a Th1 response that protects against genital chlamydial infection in a mouse model. Hansen J; Jensen KT; Follmann F; Agger EM; Theisen M; Andersen P J Infect Dis; 2008 Sep; 198(5):758-67. PubMed ID: 18652549 [TBL] [Abstract][Full Text] [Related]
14. A vaccine formulated with the major outer membrane protein can protect C3H/HeN, a highly susceptible strain of mice, from a Chlamydia muridarum genital challenge. Pal S; Tatarenkova OV; de la Maza LM Immunology; 2015 Nov; 146(3):432-43. PubMed ID: 26423798 [TBL] [Abstract][Full Text] [Related]
15. Poly(lactic acid)-poly(ethylene glycol) nanoparticles provide sustained delivery of a Chlamydia trachomatis recombinant MOMP peptide and potentiate systemic adaptive immune responses in mice. Dixit S; Singh SR; Yilma AN; Agee RD; Taha M; Dennis VA Nanomedicine; 2014 Aug; 10(6):1311-21. PubMed ID: 24602605 [TBL] [Abstract][Full Text] [Related]
16. Mucosal immunization with recombinant MOMP genetically linked with modified cholera toxin confers protection against Chlamydia trachomatis infection. Singh SR; Hulett K; Pillai SR; Dennis VA; Oh MK; Scissum-Gunn K Vaccine; 2006 Feb; 24(8):1213-24. PubMed ID: 16194585 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of a multisubunit recombinant polymorphic membrane protein and major outer membrane protein T cell vaccine against Chlamydia muridarum genital infection in three strains of mice. Yu H; Karunakaran KP; Jiang X; Brunham RC Vaccine; 2014 Aug; 32(36):4672-80. PubMed ID: 24992718 [TBL] [Abstract][Full Text] [Related]
18. Intranasal vaccination with a secreted chlamydial protein enhances resolution of genital Chlamydia muridarum infection, protects against oviduct pathology, and is highly dependent upon endogenous gamma interferon production. Murthy AK; Chambers JP; Meier PA; Zhong G; Arulanandam BP Infect Immun; 2007 Feb; 75(2):666-76. PubMed ID: 17118987 [TBL] [Abstract][Full Text] [Related]
19. Recombinant expression of Chlamydia trachomatis major outer membrane protein in E. Coli outer membrane as a substrate for vaccine research. Wen Z; Boddicker MA; Kaufhold RM; Khandelwal P; Durr E; Qiu P; Lucas BJ; Nahas DD; Cook JC; Touch S; Skinner JM; Espeseth AS; Przysiecki CT; Zhang L BMC Microbiol; 2016 Jul; 16(1):165. PubMed ID: 27464881 [TBL] [Abstract][Full Text] [Related]
20. A TLR2 agonist is a more effective adjuvant for a Chlamydia major outer membrane protein vaccine than ligands to other TLR and NOD receptors. Cheng C; Jain P; Bettahi I; Pal S; Tifrea D; de la Maza LM Vaccine; 2011 Sep; 29(38):6641-9. PubMed ID: 21742006 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]