These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38862392)

  • 1. Highly Reversible Positive-Valence Conversion of Sulfur Chemistry for High-Voltage Zinc-Sulfur Batteries.
    Chen Z; Huang Z; Zhu J; Li D; Chen A; Wei Z; Wang Y; Li N; Zhi C
    Adv Mater; 2024 Jul; 36(30):e2402898. PubMed ID: 38862392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tellurium with Reversible Six-Electron Transfer Chemistry for High-Performance Zinc Batteries.
    Chen Z; Wang S; Wei Z; Wang Y; Wu Z; Hou Y; Zhu J; Wang Y; Liang G; Huang Z; Chen A; Wang D; Zhi C
    J Am Chem Soc; 2023 Sep; 145(37):20521-20529. PubMed ID: 37672393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Tellurium-Boosted High-Areal-Capacity Zinc-Sulfur Battery.
    Zhang Y; Amardeep A; Wu Z; Tao L; Xu J; Freschi DJ; Liu J
    Adv Sci (Weinh); 2024 Jun; 11(23):e2308580. PubMed ID: 38566441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox Catalysis Promoted Activation of Sulfur Redox Chemistry for Energy-Dense Flexible Solid-State Zn-S Battery.
    Zhang H; Shang Z; Luo G; Jiao S; Cao R; Chen Q; Lu K
    ACS Nano; 2022 May; 16(5):7344-7351. PubMed ID: 34889091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Low Cost Aqueous Zn-S Battery Realizing Ultrahigh Energy Density.
    Li W; Wang K; Jiang K
    Adv Sci (Weinh); 2020 Dec; 7(23):2000761. PubMed ID: 33304742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Initiating a Reversible Aqueous Zn/Sulfur Battery through a "Liquid Film".
    Zhao Y; Wang D; Li X; Yang Q; Guo Y; Mo F; Li Q; Peng C; Li H; Zhi C
    Adv Mater; 2020 Aug; 32(32):e2003070. PubMed ID: 32596928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A High-Energy Four-Electron Zinc Battery Enabled by Evoking Full Electrochemical Activity in Copper Sulfide Electrode.
    Li S; Wei Z; Yang J; Chen G; Zhi C; Li H; Liu Z
    ACS Nano; 2023 Nov; 17(22):22478-22487. PubMed ID: 37934024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-High-Capacity and Dendrite-Free Zinc-Sulfur Conversion Batteries Based on a Low-Cost Deep Eutectic Solvent.
    Cui M; Fei J; Mo F; Lei H; Huang Y
    ACS Appl Mater Interfaces; 2021 Nov; 13(46):54981-54989. PubMed ID: 34780154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid Electrolyte Design for High-Performance Zinc-Sulfur Battery.
    Guo Y; Chua R; Chen Y; Cai Y; Tang EJJ; Lim JJN; Tran TH; Verma V; Wong MW; Srinivasan M
    Small; 2023 Jul; 19(29):e2207133. PubMed ID: 36971296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrolyte for High-Energy- and Power-Density Zinc Batteries and Ion Capacitors.
    Chen P; Sun X; Pietsch T; Plietker B; Brunner E; Ruck M
    Adv Mater; 2023 Feb; 35(7):e2207131. PubMed ID: 36305595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facilitating the Electrochemical Oxidation of ZnS through Iodide Catalysis for Aqueous Zinc-Sulfur Batteries.
    Hei P; Sai Y; Liu C; Li W; Wang J; Sun X; Song Y; Liu XX
    Angew Chem Int Ed Engl; 2024 Feb; 63(9):e202316082. PubMed ID: 38196064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Four-Electron Sulfur Electrode Hosting a Cu
    Wu X; Markir A; Ma L; Xu Y; Jiang H; Leonard DP; Shin W; Wu T; Lu J; Ji X
    Angew Chem Int Ed Engl; 2019 Sep; 58(36):12640-12645. PubMed ID: 31301101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinguish MnO
    Li C; Yuan H; Liu T; Zhang R; Zhu J; Cui H; Wang Y; Cao D; Wang D; Zhi C
    Angew Chem Int Ed Engl; 2024 May; 63(22):e202403504. PubMed ID: 38563637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Halide Exchange in Perovskites Enables Bromine/Iodine Hybrid Cathodes for Highly Durable Zinc Ion Batteries.
    Wang S; Wang Y; Wei Z; Zhu J; Chen Z; Hong H; Xiong Q; Zhang D; Li S; Wang S; Huang Y; Zhi C
    Adv Mater; 2024 Jun; 36(26):e2401924. PubMed ID: 38593988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding Sulfur Redox Mechanisms in Different Electrolytes for Room-Temperature Na-S Batteries.
    Liu H; Lai WH; Yang Q; Lei Y; Wu C; Wang N; Wang YX; Chou SL; Liu HK; Dou SX
    Nanomicro Lett; 2021 May; 13(1):121. PubMed ID: 34138346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selenium-Anchored Chlorine Redox Chemistry in Aqueous Zinc Dual-Ion Batteries.
    Chen Z; Hou Y; Wang Y; Wei Z; Chen A; Li P; Huang Z; Li N; Zhi C
    Adv Mater; 2024 Feb; 36(6):e2309330. PubMed ID: 38009647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. "Water-in-Salt" Electrolyte Suppressed MnVOPO
    Zhu S; Zhang W; Liao X; Zhang L; An Q; Wang X
    Materials (Basel); 2024 Sep; 17(18):. PubMed ID: 39336197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the Oxidation and Reduction Reactions of Sulfur in Rechargeable Aluminum-Sulfur Batteries with Deep Eutectic Solvent and Ionic Liquid Electrolytes.
    Bian Y; Jiang W; Zhang Y; Zhao L; Wang X; Lv Z; Zhou S; Han Y; Chen H; Lin MC
    ChemSusChem; 2022 Jan; 15(1):e202101398. PubMed ID: 34532988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anion-Regulated Sulfur Conversion in High-Content Carbon Layer Confined Sulfur Cathode Maximizes Voltage and Rate Capability of K-S Batteries.
    Jiang Z; Li N; Li L; Tan F; Huang J; Huang S
    Adv Mater; 2024 Apr; 36(15):e2311127. PubMed ID: 38181516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nontraditional Approaches To Enable High-Energy and Long-Life Lithium-Sulfur Batteries.
    Zhao C; Amine K; Xu GL
    Acc Chem Res; 2023 Oct; 56(19):2700-2712. PubMed ID: 37728762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.