These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 38862426)

  • 1. NextPolish2: A Repeat-aware Polishing Tool for Genomes Assembled Using HiFi Long Reads.
    Hu J; Wang Z; Liang F; Liu SL; Ye K; Wang DP
    Genomics Proteomics Bioinformatics; 2024 May; 22(1):. PubMed ID: 38862426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly accurate long reads are crucial for realizing the potential of biodiversity genomics.
    Hotaling S; Wilcox ER; Heckenhauer J; Stewart RJ; Frandsen PB
    BMC Genomics; 2023 Mar; 24(1):117. PubMed ID: 36927511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polypolish: Short-read polishing of long-read bacterial genome assemblies.
    Wick RR; Holt KE
    PLoS Comput Biol; 2022 Jan; 18(1):e1009802. PubMed ID: 35073327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SpLitteR: diploid genome assembly using TELL-Seq linked-reads and assembly graphs.
    Tolstoganov I; Chen Z; Pevzner P; Korobeynikov A
    PeerJ; 2024; 12():e18050. PubMed ID: 39351368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ntEdit+Sealer: Efficient Targeted Error Resolution and Automated Finishing of Long-Read Genome Assemblies.
    Li JX; Coombe L; Wong J; Birol I; Warren RL
    Curr Protoc; 2022 May; 2(5):e442. PubMed ID: 35567771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BlockPolish: accurate polishing of long-read assembly via block divide-and-conquer.
    Huang N; Nie F; Ni P; Gao X; Luo F; Wang J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34619757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ARAMIS: From systematic errors of NGS long reads to accurate assemblies.
    Sacristán-Horcajada E; González-de la Fuente S; Peiró-Pastor R; Carrasco-Ramiro F; Amils R; Requena JM; Berenguer J; Aguado B
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34013348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NextPolish: a fast and efficient genome polishing tool for long-read assembly.
    Hu J; Fan J; Sun Z; Liu S
    Bioinformatics; 2020 Apr; 36(7):2253-2255. PubMed ID: 31778144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of a
    Hoyer LL; Freeman BA; Hogan EK; Hernandez AG
    Front Cell Infect Microbiol; 2024; 14():1329438. PubMed ID: 38362496
    [No Abstract]   [Full Text] [Related]  

  • 10. Long amplicon HiFi sequencing for mitochondrial DNA genomes.
    Cai ZF; Hu JY; Yin TT; Wang D; Shen QK; Ma C; Ou DQ; Xu MM; Shi X; Li QL; Wu RN; Ajuma L; Adeola AC; Zhang YP; Peng MS
    Mol Ecol Resour; 2023 Jul; 23(5):1014-1022. PubMed ID: 36756726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polishing the Oxford Nanopore long-read assemblies of bacterial pathogens with Illumina short reads to improve genomic analyses.
    Chen Z; Erickson DL; Meng J
    Genomics; 2021 May; 113(3):1366-1377. PubMed ID: 33716184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of haplotype-aware long-read error correction with hifieval.
    Guo Y; Feng X; Li H
    Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37851384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A complete telomere-to-telomere assembly of the maize genome.
    Chen J; Wang Z; Tan K; Huang W; Shi J; Li T; Hu J; Wang K; Wang C; Xin B; Zhao H; Song W; Hufford MB; Schnable JC; Jin W; Lai J
    Nat Genet; 2023 Jul; 55(7):1221-1231. PubMed ID: 37322109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the two up-to-date sequencing technologies for genome assembly: HiFi reads of Pacific Biosciences Sequel II system and ultralong reads of Oxford Nanopore.
    Lang D; Zhang S; Ren P; Liang F; Sun Z; Meng G; Tan Y; Li X; Lai Q; Han L; Wang D; Hu F; Wang W; Liu S
    Gigascience; 2020 Dec; 9(12):. PubMed ID: 33319909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads.
    Nurk S; Walenz BP; Rhie A; Vollger MR; Logsdon GA; Grothe R; Miga KH; Eichler EE; Phillippy AM; Koren S
    Genome Res; 2020 Sep; 30(9):1291-1305. PubMed ID: 32801147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benchmarking multi-platform sequencing technologies for human genome assembly.
    Wang J; Veldsman WP; Fang X; Huang Y; Xie X; Lyu A; Zhang L
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37594299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MitoHiFi: a python pipeline for mitochondrial genome assembly from PacBio high fidelity reads.
    Uliano-Silva M; Ferreira JGRN; Krasheninnikova K; ; Formenti G; Abueg L; Torrance J; Myers EW; Durbin R; Blaxter M; McCarthy SA
    BMC Bioinformatics; 2023 Jul; 24(1):288. PubMed ID: 37464285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GAPPadder: a sensitive approach for closing gaps on draft genomes with short sequence reads.
    Chu C; Li X; Wu Y
    BMC Genomics; 2019 Jun; 20(Suppl 5):426. PubMed ID: 31167639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Apollo: a sequencing-technology-independent, scalable and accurate assembly polishing algorithm.
    Firtina C; Kim JS; Alser M; Senol Cali D; Cicek AE; Alkan C; Mutlu O
    Bioinformatics; 2020 Jun; 36(12):3669-3679. PubMed ID: 32167530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of strategies for the assembly of diverse bacterial genomes using MinION long-read sequencing.
    Goldstein S; Beka L; Graf J; Klassen JL
    BMC Genomics; 2019 Jan; 20(1):23. PubMed ID: 30626323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.