These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38862551)

  • 21. Acceleration of tropical cyclogenesis by self-aggregation feedbacks.
    Muller CJ; Romps DM
    Proc Natl Acad Sci U S A; 2018 Mar; 115(12):2930-2935. PubMed ID: 29507192
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The lightness of water vapor helps to stabilize tropical climate.
    Seidel SD; Yang D
    Sci Adv; 2020 May; 6(19):eaba1951. PubMed ID: 32494724
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The cloud-free global energy balance and inferred cloud radiative effects: an assessment based on direct observations and climate models.
    Wild M; Hakuba MZ; Folini D; Dörig-Ott P; Schär C; Kato S; Long CN
    Clim Dyn; 2019; 52(7):4787-4812. PubMed ID: 30996525
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of a Mixed Ocean Layer and the Diurnal Cycle on Convective Aggregation.
    Tompkins AM; Semie AG
    J Adv Model Earth Syst; 2021 Dec; 13(12):e2020MS002186. PubMed ID: 35859729
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Model spread in tropical low cloud feedback tied to overturning circulation response to warming.
    Schiro KA; Su H; Ahmed F; Dai N; Singer CE; Gentine P; Elsaesser GS; Jiang JH; Choi YS; David Neelin J
    Nat Commun; 2022 Nov; 13(1):7119. PubMed ID: 36402770
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Space observations of cold-cloud phase change.
    Choi YS; Lindzen RS; Ho CH; Kim J
    Proc Natl Acad Sci U S A; 2010 Jun; 107(25):11211-6. PubMed ID: 20534562
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Diurnal Path to Persistent Convective Self-Aggregation.
    Jensen GG; Fiévet R; Haerter JO
    J Adv Model Earth Syst; 2022 May; 14(5):e2021MS002923. PubMed ID: 35865232
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the Interplay Between Convective Aggregation, Surface Temperature Gradients, and Climate Sensitivity.
    Coppin D; Bony S
    J Adv Model Earth Syst; 2018 Dec; 10(12):3123-3138. PubMed ID: 31007836
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Emergent Constraints on Regional Cloud Feedbacks.
    Lutsko NJ; Popp M; Nazarian RH; Albright AL
    Geophys Res Lett; 2021 May; 48(10):e2021GL092934. PubMed ID: 34219827
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Using Active Remote Sensing to Evaluate Cloud-Climate Feedbacks: a Review and a Look to the Future.
    Mace GG; Berry E
    Curr Clim Change Rep; 2017; 3(3):185-192. PubMed ID: 32025473
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Radiative controls by clouds and thermodynamics shape surface temperatures and turbulent fluxes over land.
    Ghausi SA; Tian Y; Zehe E; Kleidon A
    Proc Natl Acad Sci U S A; 2023 Jul; 120(29):e2220400120. PubMed ID: 37428906
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Using Satellite Observations to Evaluate Model Microphysical Representation of Arctic Mixed-Phase Clouds.
    Shaw J; McGraw Z; Bruno O; Storelvmo T; Hofer S
    Geophys Res Lett; 2022 Feb; 49(3):e2021GL096191. PubMed ID: 35845251
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Strong Dependence of Atmospheric Feedbacks on Mixed-Phase Microphysics and Aerosol-Cloud Interactions in HadGEM3.
    Bodas-Salcedo A; Mulcahy JP; Andrews T; Williams KD; Ringer MA; Field PR; Elsaesser GS
    J Adv Model Earth Syst; 2019 Jun; 11(6):1735-1758. PubMed ID: 31598189
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessing the effects of anthropogenic aerosols on Pacific storm track using a multiscale global climate model.
    Wang Y; Wang M; Zhang R; Ghan SJ; Lin Y; Hu J; Pan B; Levy M; Jiang JH; Molina MJ
    Proc Natl Acad Sci U S A; 2014 May; 111(19):6894-9. PubMed ID: 24733923
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sugar, Gravel, Fish, and Flowers: Dependence of Mesoscale Patterns of Trade-Wind Clouds on Environmental Conditions.
    Bony S; Schulz H; Vial J; Stevens B
    Geophys Res Lett; 2020 Apr; 47(7):e2019GL085988. PubMed ID: 32713982
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interactive nature of climate change and aerosol forcing.
    Nazarenko L; Rind D; Tsigaridis K; Del Genio AD; Kelley M; Tausnev N
    J Geophys Res Atmos; 2017 Mar; 122(6):3457-3480. PubMed ID: 32818128
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds.
    Fan J; Leung LR; Rosenfeld D; Chen Q; Li Z; Zhang J; Yan H
    Proc Natl Acad Sci U S A; 2013 Nov; 110(48):E4581-90. PubMed ID: 24218569
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A large source of cloud condensation nuclei from new particle formation in the tropics.
    Williamson CJ; Kupc A; Axisa D; Bilsback KR; Bui T; Campuzano-Jost P; Dollner M; Froyd KD; Hodshire AL; Jimenez JL; Kodros JK; Luo G; Murphy DM; Nault BA; Ray EA; Weinzierl B; Wilson JC; Yu F; Yu P; Pierce JR; Brock CA
    Nature; 2019 Oct; 574(7778):399-403. PubMed ID: 31619794
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sensor-based clear and cloud radiance calculations in the community radiative transfer model.
    Liu Q; Xue Y; Li C
    Appl Opt; 2013 Jul; 52(20):4981-90. PubMed ID: 23852214
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessing effective radiative forcing from aerosol-cloud interactions over the global ocean.
    Wall CJ; Norris JR; Possner A; McCoy DT; McCoy IL; Lutsko NJ
    Proc Natl Acad Sci U S A; 2022 Nov; 119(46):e2210481119. PubMed ID: 36343255
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.