These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 38862735)
1. Deep-learning-enabled antibiotic discovery through molecular de-extinction. Wan F; Torres MDT; Peng J; de la Fuente-Nunez C Nat Biomed Eng; 2024 Jul; 8(7):854-871. PubMed ID: 38862735 [TBL] [Abstract][Full Text] [Related]
2. Molecular de-extinction of ancient antimicrobial peptides enabled by machine learning. Maasch JRMA; Torres MDT; Melo MCR; de la Fuente-Nunez C Cell Host Microbe; 2023 Aug; 31(8):1260-1274.e6. PubMed ID: 37516110 [TBL] [Abstract][Full Text] [Related]
3. Mining for encrypted peptide antibiotics in the human proteome. Torres MDT; Melo MCR; Flowers L; Crescenzi O; Notomista E; de la Fuente-Nunez C Nat Biomed Eng; 2022 Jan; 6(1):67-75. PubMed ID: 34737399 [TBL] [Abstract][Full Text] [Related]
4. Machine Learning-Driven Discovery and Evaluation of Antimicrobial Peptides from Song J; Liu K; Jin X; Huang K; Fu S; Yi W; Cai Y; Yu Z; Mao F; Zhang Y Mar Drugs; 2024 Aug; 22(9):. PubMed ID: 39330266 [TBL] [Abstract][Full Text] [Related]
5. Discovery of AMPs from random peptides via deep learning-based model and biological activity validation. Du J; Yang C; Deng Y; Guo H; Gu M; Chen D; Liu X; Huang J; Yan W; Liu J Eur J Med Chem; 2024 Nov; 277():116797. PubMed ID: 39197254 [TBL] [Abstract][Full Text] [Related]
6. Discovery of a structural class of antibiotics with explainable deep learning. Wong F; Zheng EJ; Valeri JA; Donghia NM; Anahtar MN; Omori S; Li A; Cubillos-Ruiz A; Krishnan A; Jin W; Manson AL; Friedrichs J; Helbig R; Hajian B; Fiejtek DK; Wagner FF; Soutter HH; Earl AM; Stokes JM; Renner LD; Collins JJ Nature; 2024 Feb; 626(7997):177-185. PubMed ID: 38123686 [TBL] [Abstract][Full Text] [Related]
7. Accelerated antimicrobial discovery via deep generative models and molecular dynamics simulations. Das P; Sercu T; Wadhawan K; Padhi I; Gehrmann S; Cipcigan F; Chenthamarakshan V; Strobelt H; Dos Santos C; Chen PY; Yang YY; Tan JPK; Hedrick J; Crain J; Mojsilovic A Nat Biomed Eng; 2021 Jun; 5(6):613-623. PubMed ID: 33707779 [TBL] [Abstract][Full Text] [Related]
8. Mining human microbiomes reveals an untapped source of peptide antibiotics. Torres MDT; Brooks EF; Cesaro A; Sberro H; Gill MO; Nicolaou C; Bhatt AS; de la Fuente-Nunez C Cell; 2024 Sep; 187(19):5453-5467.e15. PubMed ID: 39163860 [TBL] [Abstract][Full Text] [Related]
9. Accelerating antibiotic discovery through artificial intelligence. Melo MCR; Maasch JRMA; de la Fuente-Nunez C Commun Biol; 2021 Sep; 4(1):1050. PubMed ID: 34504303 [TBL] [Abstract][Full Text] [Related]
10. Design SMAP29-LysPA26 as a Highly Efficient Artilysin against Pseudomonas aeruginosa with Bactericidal and Antibiofilm Activity. Wang T; Zheng Y; Dai J; Zhou J; Yu R; Zhang C Microbiol Spectr; 2021 Dec; 9(3):e0054621. PubMed ID: 34878337 [TBL] [Abstract][Full Text] [Related]
11. Accelerating the discovery of antifungal peptides using deep temporal convolutional networks. Singh V; Shrivastava S; Kumar Singh S; Kumar A; Saxena S Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35152278 [TBL] [Abstract][Full Text] [Related]
12. Membrane mechanism of temporin-1CEc, an antimicrobial peptide isolated from the skin secretions of Rana chensinensis, and its systemic analogs. Ji F; Zhao Y; Jiang F; Shang D Bioorg Chem; 2022 Feb; 119():105544. PubMed ID: 34953322 [TBL] [Abstract][Full Text] [Related]
13. Antimicrobial peptides: triumphs and challenges. Zeng ZZ; Huang SH; Alezra V; Wan Y Future Med Chem; 2021 Aug; 13(16):1313-1315. PubMed ID: 34148371 [No Abstract] [Full Text] [Related]
14. De novo synthetic antimicrobial peptide design with a recurrent neural network. Li C; Sutherland D; Richter A; Coombe L; Yanai A; Warren RL; Kotkoff M; Hof F; Hoang LMN; Helbing CC; Birol I Protein Sci; 2024 Aug; 33(8):e5088. PubMed ID: 38988311 [TBL] [Abstract][Full Text] [Related]
15. Discovery of antimicrobial peptides in the global microbiome with machine learning. Santos-Júnior CD; Torres MDT; Duan Y; Rodríguez Del Río Á; Schmidt TSB; Chong H; Fullam A; Kuhn M; Zhu C; Houseman A; Somborski J; Vines A; Zhao XM; Bork P; Huerta-Cepas J; de la Fuente-Nunez C; Coelho LP Cell; 2024 Jul; 187(14):3761-3778.e16. PubMed ID: 38843834 [TBL] [Abstract][Full Text] [Related]
16. Structure-aware deep learning model for peptide toxicity prediction. Ebrahimikondori H; Sutherland D; Yanai A; Richter A; Salehi A; Li C; Coombe L; Kotkoff M; Warren RL; Birol I Protein Sci; 2024 Jul; 33(7):e5076. PubMed ID: 39196703 [TBL] [Abstract][Full Text] [Related]
17. De Novo Antimicrobial Peptide Design with Feedback Generative Adversarial Networks. Zervou MA; Doutsi E; Pantazis Y; Tsakalides P Int J Mol Sci; 2024 May; 25(10):. PubMed ID: 38791544 [TBL] [Abstract][Full Text] [Related]
18. AMPActiPred: A three-stage framework for predicting antibacterial peptides and activity levels with deep forest. Yao L; Guan J; Xie P; Chung CR; Deng J; Huang Y; Chiang YC; Lee TY Protein Sci; 2024 Jun; 33(6):e5006. PubMed ID: 38723168 [TBL] [Abstract][Full Text] [Related]
19. Antimicrobial therapy based on self-assembling peptides. Wang Y; Zhang Y; Su R; Wang Y; Qi W J Mater Chem B; 2024 May; 12(21):5061-5075. PubMed ID: 38726712 [TBL] [Abstract][Full Text] [Related]
20. Seeking old wisdoms for new AMP discovery. Wang J Cell Host Microbe; 2023 Aug; 31(8):1251-1253. PubMed ID: 37562358 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]