BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 38863089)

  • 21. The use of patient specific polyetheretherketone implants for reconstruction of maxillofacial deformities.
    Järvinen S; Suojanen J; Kormi E; Wilkman T; Kiukkonen A; Leikola J; Stoor P
    J Craniomaxillofac Surg; 2019 Jul; 47(7):1072-1076. PubMed ID: 31103433
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Polyetheretherketone for long-term implantable devices.
    Williams D
    Med Device Technol; 2008; 19(1):8, 10-1. PubMed ID: 18348432
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PEEK biomaterials in trauma, orthopedic, and spinal implants.
    Kurtz SM; Devine JN
    Biomaterials; 2007 Nov; 28(32):4845-69. PubMed ID: 17686513
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interlocking polyetheretherketone implant.
    Thomas M; Lee NJ
    Int J Oral Maxillofac Surg; 2016 Aug; 45(8):969-70. PubMed ID: 26972161
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tailoring the biologic responses of 3D printed PEEK medical implants by plasma functionalization.
    Han X; Sharma N; Spintzyk S; Zhou Y; Xu Z; Thieringer FM; Rupp F
    Dent Mater; 2022 Jul; 38(7):1083-1098. PubMed ID: 35562293
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Polyetheretherketone (PEEK). Part I: prospects for use in orthopaedics and traumatology].
    Horák Z; Pokorný D; Fulín P; Slouf M; Jahoda D; Sosna A
    Acta Chir Orthop Traumatol Cech; 2010; 77(6):463-9. PubMed ID: 21223825
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Strategies to improve the performance of polyetheretherketone (PEEK) as orthopedic implants: from surface modification to addition of bioactive materials.
    Huang H; Liu X; Wang J; Suo M; Zhang J; Sun T; Wang H; Liu C; Li Z
    J Mater Chem B; 2024 May; 12(19):4533-4552. PubMed ID: 38477504
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of 3D-printed titanium-alloy, standard titanium-alloy, and PEEK interbody spacers in an ovine model.
    Van Horn MR; Beard R; Wang W; Cunningham BW; Mullinix KP; Allall M; Bucklen BS
    Spine J; 2021 Dec; 21(12):2097-2103. PubMed ID: 34029756
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of printing path and material components on mechanical properties of 3D-printed polyether-ether-ketone/hydroxyapatite composites.
    Zheng J; Kang J; Sun C; Yang C; Wang L; Li D
    J Mech Behav Biomed Mater; 2021 Jun; 118():104475. PubMed ID: 33773239
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D printed porous PEEK created via fused filament fabrication for osteoconductive orthopaedic surfaces.
    Spece H; Yu T; Law AW; Marcolongo M; Kurtz SM
    J Mech Behav Biomed Mater; 2020 Sep; 109():103850. PubMed ID: 32543413
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimization and manufacture of polyetheretherketone patient specific cranial implants by material extrusion - A clinical perspective.
    Smith JA; Petersmann S; Arbeiter F; Schäfer U
    J Mech Behav Biomed Mater; 2023 Aug; 144():105965. PubMed ID: 37343357
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessment of Customized Alveolar Bone Augmentation Using Titanium Scaffolds vs Polyetheretherketone (PEEK) Scaffolds: A Comparative Study Based on 3D Printing Technology.
    Li L; Gao H; Wang C; Ji P; Huang Y; Wang C
    ACS Biomater Sci Eng; 2022 May; 8(5):2028-2039. PubMed ID: 35443132
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polyetheretherketone (PEEK) for medical applications.
    Panayotov IV; Orti V; Cuisinier F; Yachouh J
    J Mater Sci Mater Med; 2016 Jul; 27(7):118. PubMed ID: 27259708
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temporal Hollowing Augmentation With Polyetheretherketone Patient-Specific Implant.
    Doh G; Eo S; Hong KY
    J Craniofac Surg; 2019 Oct; 30(7):2131-2133. PubMed ID: 31107388
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Current strategies to improve the bioactivity of PEEK.
    Ma R; Tang T
    Int J Mol Sci; 2014 Mar; 15(4):5426-45. PubMed ID: 24686515
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Use of two-piece polyetheretherketone (PEEK) implants in orbitozygomatic reconstruction.
    Goodson ML; Farr D; Keith D; Banks RJ
    Br J Oral Maxillofac Surg; 2012 Apr; 50(3):268-9. PubMed ID: 21700371
    [No Abstract]   [Full Text] [Related]  

  • 37. Digital fabrication of polyetheretherketone retentive bar attachment inserts as overdenture maintenance: A dental technique.
    Abdelaziz MS; Tella EAESAEM
    J Prosthet Dent; 2024 Jun; 131(6):1034-1037. PubMed ID: 35606181
    [TBL] [Abstract][Full Text] [Related]  

  • 38. One-Step Customized PEEK Cranioplasty After 3D Printed Resection Template Assisted Surgery for a Frontal Intraosseous Meningioma: A Case Report.
    Barros A; Brauge D; QuÉhan R; Cavallier Z; Roux FE; Moyse E
    Turk Neurosurg; 2021; 31(1):142-147. PubMed ID: 33372259
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Custom design and biomechanical clinical trials of 3D-printed polyether ether ketone femoral shaft prosthesis.
    Wu C; Zeng B; Deng J; Shen D; Wang X; Tan L; Liu X; Qiu G
    J Biomed Mater Res B Appl Biomater; 2022 Sep; 110(9):2006-2014. PubMed ID: 35297154
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of cage subsidence in standalone lateral lumbar interbody fusion: novel 3D-printed titanium versus polyetheretherketone (PEEK) cage.
    Adl Amini D; Okano I; Oezel L; Zhu J; Chiapparelli E; Shue J; Sama AA; Cammisa FP; Girardi FP; Hughes AP
    Eur Spine J; 2021 Aug; 30(8):2377-2384. PubMed ID: 34215921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.