These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Anion Binding as a Strategy for the Synthesis of Porous Salts. Antonio AM; Dworzak MR; Korman KJ; Yap GPA; Bloch ED Chem Mater; 2022 Dec; 34(24):10823-10831. PubMed ID: 36590703 [TBL] [Abstract][Full Text] [Related]
6. Single Crystals of Insoluble Porous Salicylimine Cages. Holsten M; Elbert SM; Rominger F; Zhang WS; Schröder RR; Mastalerz M Chemistry; 2023 Nov; 29(66):e202302116. PubMed ID: 37577877 [TBL] [Abstract][Full Text] [Related]
7. Porous metal-organic alloys based on soluble coordination cages. Antonio AM; Korman KJ; Yap GPA; Bloch ED Chem Sci; 2020 Oct; 11(46):12540-12546. PubMed ID: 34123234 [TBL] [Abstract][Full Text] [Related]
8. Kinetic products in coordination networks: ab initio X-ray powder diffraction analysis. Martí-Rujas J; Kawano M Acc Chem Res; 2013 Feb; 46(2):493-505. PubMed ID: 23252592 [TBL] [Abstract][Full Text] [Related]
9. Pore-Networked Soft Materials Based on Metal-Organic Polyhedra. Wang Z; Furukawa S Acc Chem Res; 2024 Feb; 57(3):327-337. PubMed ID: 38205789 [TBL] [Abstract][Full Text] [Related]
10. Porous Shape-Persistent Organic Cage Compounds of Different Size, Geometry, and Function. Mastalerz M Acc Chem Res; 2018 Oct; 51(10):2411-2422. PubMed ID: 30203648 [TBL] [Abstract][Full Text] [Related]
11. Recent advances of application of porous molecular cages for enantioselective recognition and separation. Zhang JH; Xie SM; Zi M; Yuan LM J Sep Sci; 2020 Jan; 43(1):134-149. PubMed ID: 31587485 [TBL] [Abstract][Full Text] [Related]
12. Modular Design of Porous Soft Materials via Self-Organization of Metal-Organic Cages. Hosono N; Kitagawa S Acc Chem Res; 2018 Oct; 51(10):2437-2446. PubMed ID: 30252435 [TBL] [Abstract][Full Text] [Related]
13. A Charged Coordination Cage-Based Porous Salt. Gosselin EJ; Decker GE; Antonio AM; Lorzing GR; Yap GPA; Bloch ED J Am Chem Soc; 2020 May; 142(21):9594-9598. PubMed ID: 32369364 [TBL] [Abstract][Full Text] [Related]
14. Utilization of a Mixed-Ligand Strategy to Tune the Properties of Cuboctahedral Porous Coordination Cages. Antonio AM; Korman KJ; Deegan MM; Taggart GA; Yap GPA; Bloch ED Inorg Chem; 2022 Mar; 61(11):4609-4617. PubMed ID: 35263080 [TBL] [Abstract][Full Text] [Related]
15. Understanding Gas Storage in Cuboctahedral Porous Coordination Cages. Lorzing GR; Gosselin AJ; Trump BA; York AHP; Sturluson A; Rowland CA; Yap GPA; Brown CM; Simon CM; Bloch ED J Am Chem Soc; 2019 Jul; 141(30):12128-12138. PubMed ID: 31271534 [TBL] [Abstract][Full Text] [Related]
16. Porous Colloidal Hydrogels Formed by Coordination-Driven Self-Assembly of Charged Metal-Organic Polyhedra. Wang Z; Craig GA; Legrand A; Haase F; Minami S; Urayama K; Furukawa S Chem Asian J; 2021 May; 16(9):1092-1100. PubMed ID: 33660942 [TBL] [Abstract][Full Text] [Related]
17. Impact of Shape Persistence on the Porosity of Molecular Cages. Moneypenny TP; Walter NP; Cai Z; Miao YR; Gray DL; Hinman JJ; Lee S; Zhang Y; Moore JS J Am Chem Soc; 2017 Mar; 139(8):3259-3264. PubMed ID: 28157299 [TBL] [Abstract][Full Text] [Related]
18. Studies on metal-organic frameworks of Cu(II) with isophthalate linkers for hydrogen storage. Yan Y; Yang S; Blake AJ; Schröder M Acc Chem Res; 2014 Feb; 47(2):296-307. PubMed ID: 24168725 [TBL] [Abstract][Full Text] [Related]