These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 38863325)
1. Engineered Graphene Material Improves the Performance of Intraneural Peripheral Nerve Electrodes. Rodríguez-Meana B; Del Valle J; Viana D; Walston ST; Ria N; Masvidal-Codina E; Garrido JA; Navarro X Adv Sci (Weinh); 2024 Aug; 11(29):e2308689. PubMed ID: 38863325 [TBL] [Abstract][Full Text] [Related]
2. Rodent model for assessing the long term safety and performance of peripheral nerve recording electrodes. Vasudevan S; Patel K; Welle C J Neural Eng; 2017 Feb; 14(1):016008. PubMed ID: 27934777 [TBL] [Abstract][Full Text] [Related]
3. Fascicle specific targeting for selective peripheral nerve stimulation. Overstreet CK; Cheng J; Keefer EW J Neural Eng; 2019 Nov; 16(6):066040. PubMed ID: 31509815 [TBL] [Abstract][Full Text] [Related]
4. Interfaces with the peripheral nerve for the control of neuroprostheses. del Valle J; Navarro X Int Rev Neurobiol; 2013; 109():63-83. PubMed ID: 24093606 [TBL] [Abstract][Full Text] [Related]
5. Fascicular nerve stimulation and recording using a novel double-aisle regenerative electrode. Delgado-Martínez I; Righi M; Santos D; Cutrone A; Bossi S; D'Amico S; Del Valle J; Micera S; Navarro X J Neural Eng; 2017 Aug; 14(4):046003. PubMed ID: 28382924 [TBL] [Abstract][Full Text] [Related]
6. Acute in vivo testing of a polymer cuff electrode with integrated microfluidic channels for stimulation, recording, and drug delivery on rat sciatic nerve. Elyahoodayan S; Larson C; Cobo AM; Meng E; Song D J Neurosci Methods; 2020 Apr; 336():108634. PubMed ID: 32068010 [TBL] [Abstract][Full Text] [Related]
7. Long-Term Functionality of Transversal Intraneural Electrodes Is Improved By Dexamethasone Treatment. de la Oliva N; Del Valle J; Delgado-Martinez I; Mueller M; Stieglitz T; Navarro X IEEE Trans Neural Syst Rehabil Eng; 2019 Feb; ():. PubMed ID: 30716042 [TBL] [Abstract][Full Text] [Related]
8. On the use of wavelet denoising and spike sorting techniques to process electroneurographic signals recorded using intraneural electrodes. Citi L; Carpaneto J; Yoshida K; Hoffmann KP; Koch KP; Dario P; Micera S J Neurosci Methods; 2008 Jul; 172(2):294-302. PubMed ID: 18534683 [TBL] [Abstract][Full Text] [Related]
9. Nanoporous graphene-based thin-film microelectrodes for in vivo high-resolution neural recording and stimulation. Viana D; Walston ST; Masvidal-Codina E; Illa X; Rodríguez-Meana B; Del Valle J; Hayward A; Dodd A; Loret T; Prats-Alfonso E; de la Oliva N; Palma M; Del Corro E; Del Pilar Bernicola M; Rodríguez-Lucas E; Gener T; de la Cruz JM; Torres-Miranda M; Duvan FT; Ria N; Sperling J; Martí-Sánchez S; Spadaro MC; Hébert C; Savage S; Arbiol J; Guimerà-Brunet A; Puig MV; Yvert B; Navarro X; Kostarelos K; Garrido JA Nat Nanotechnol; 2024 Apr; 19(4):514-523. PubMed ID: 38212522 [TBL] [Abstract][Full Text] [Related]
10. Implantable microelectrodes with new electro-conductive materials for recording sympathetic neural discharge. Matsukawa K; Komine H; Tsuchimochi H; Murata J; Yonezawa Y; Kondo K; Seki Y Jpn J Physiol; 2003 Feb; 53(1):61-4. PubMed ID: 12689359 [TBL] [Abstract][Full Text] [Related]
11. An implantable microactuated intrafascicular electrode for peripheral nerves. Bossi S; Kammer S; Dörge T; Menciassi A; Hoffmann KP; Micera S IEEE Trans Biomed Eng; 2009 Nov; 56(11 Pt 2):2701-6. PubMed ID: 19758853 [TBL] [Abstract][Full Text] [Related]
12. High sensitivity recording of afferent nerve activity using ultra-compliant microchannel electrodes: an acute in vivo validation. Minev IR; Chew DJ; Delivopoulos E; Fawcett JW; Lacour SP J Neural Eng; 2012 Apr; 9(2):026005. PubMed ID: 22328617 [TBL] [Abstract][Full Text] [Related]
13. Selective chronic recording in small nerve fascicles of sciatic nerve with carbon nanotube yarns in rats. Kotamraju BP; Eggers TE; McCallum GA; Durand DM J Neural Eng; 2024 Jan; 20(6):. PubMed ID: 38100824 [No Abstract] [Full Text] [Related]
14. [Experimental study of biocompatibility of LIFEs in peripheral fascicles]. Zheng XJ; Zhang J; Chen ZW; Chen TY; Hu TP; Si Y; Zhang XW Zhonghua Yi Xue Za Zhi; 2003 Dec; 83(24):2152-7. PubMed ID: 14720425 [TBL] [Abstract][Full Text] [Related]
15. Combining biophysical models and machine learning to optimize implant geometry and stimulation protocol for intraneural electrodes. Romeni S; Losanno E; Koert E; Pierantoni L; Delgado-Martinez I; Navarro X; Micera S J Neural Eng; 2023 Jul; 20(4):. PubMed ID: 37369194 [No Abstract] [Full Text] [Related]
16. Biomedical and Tissue Engineering Strategies to Control Foreign Body Reaction to Invasive Neural Electrodes. Gori M; Vadalà G; Giannitelli SM; Denaro V; Di Pino G Front Bioeng Biotechnol; 2021; 9():659033. PubMed ID: 34113605 [TBL] [Abstract][Full Text] [Related]
17. Neural interfaces for regenerated nerve stimulation and recording. Dario P; Garzella P; Toro M; Micera S; Alavi M; Meyer U; Valderrama E; Sebastiani L; Ghelarducci B; Mazzoni C; Pastacaldi P IEEE Trans Rehabil Eng; 1998 Dec; 6(4):353-63. PubMed ID: 9865882 [TBL] [Abstract][Full Text] [Related]
18. Time course study of long-term biocompatibility and foreign body reaction to intraneural polyimide-based implants. de la Oliva N; Navarro X; Del Valle J J Biomed Mater Res A; 2018 Mar; 106(3):746-757. PubMed ID: 29052368 [TBL] [Abstract][Full Text] [Related]
19. Optimizing the design of bipolar nerve cuff electrodes for improved recording of peripheral nerve activity. Sabetian P; Popovic MR; Yoo PB J Neural Eng; 2017 Jun; 14(3):036015. PubMed ID: 28251960 [TBL] [Abstract][Full Text] [Related]
20. Microneurography in rats: a minimally invasive method to record single C-fiber action potentials from peripheral nerves in vivo. Serra J; Bostock H; Navarro X Neurosci Lett; 2010 Feb; 470(3):168-74. PubMed ID: 19800936 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]