These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 38863546)
1. Effectiveness of nanomaterials and their counterparts in improving rice growth and yield under arsenic contamination. Li X; Wang X; Ma X; Sun W; Chen K; Dou F Front Plant Sci; 2024; 15():1338530. PubMed ID: 38863546 [TBL] [Abstract][Full Text] [Related]
2. Improving biofortification success rates and productivity through zinc nanocomposites in rice (Oryza sativa L.). Parashar R; Afzal S; Mishra M; Singh NK Environ Sci Pollut Res Int; 2023 Mar; 30(15):44223-44233. PubMed ID: 36689105 [TBL] [Abstract][Full Text] [Related]
3. Copper oxide (CuO) nanoparticles affect yield, nutritional quality, and auxin associated gene expression in weedy and cultivated rice (Oryza sativa L.) grains. Deng C; Wang Y; Navarro G; Sun Y; Cota-Ruiz K; Hernandez-Viezcas JA; Niu G; Li C; White JC; Gardea-Torresdey J Sci Total Environ; 2022 Mar; 810():152260. PubMed ID: 34896498 [TBL] [Abstract][Full Text] [Related]
4. Effect of ZnO nanoparticles on the productivity, Zn biofortification, and nutritional quality of rice in a life cycle study. Yang G; Yuan H; Ji H; Liu H; Zhang Y; Wang G; Chen L; Guo Z Plant Physiol Biochem; 2021 Jun; 163():87-94. PubMed ID: 33823360 [TBL] [Abstract][Full Text] [Related]
5. Orthosilicic acid (OSA) reduced grain arsenic accumulation and enhanced yield by modulating the level of trace element, antioxidants, and thiols in rice. Dwivedi S; Kumar A; Mishra S; Sharma P; Sinam G; Bahadur L; Goyal V; Jain N; Tripathi RD Environ Sci Pollut Res Int; 2020 Jul; 27(19):24025-24038. PubMed ID: 32301095 [TBL] [Abstract][Full Text] [Related]
6. Zinc oxide nanoparticles enhanced rice yield, quality, and zinc content of edible grain fraction synergistically. Mi K; Yuan X; Wang Q; Dun C; Wang R; Yang S; Yang Y; Zhang H; Zhang H Front Plant Sci; 2023; 14():1196201. PubMed ID: 37662145 [TBL] [Abstract][Full Text] [Related]
7. Elucidating the impact of three metallic nanoagrichemicals and their bulk and ionic counterparts on the chemical properties of bulk and rhizosphere soils in rice paddies. Wang X; Li X; Dou F; Sun W; Chen K; Wen Y; Ma X Environ Pollut; 2021 Dec; 290():118005. PubMed ID: 34419859 [TBL] [Abstract][Full Text] [Related]
8. Assessment of potential dietary toxicity and arsenic accumulation in two contrasting rice genotypes: Effect of soil amendments. Irem S; Islam E; Maathuis FJM; Niazi NK; Li T Chemosphere; 2019 Jun; 225():104-114. PubMed ID: 30870627 [TBL] [Abstract][Full Text] [Related]
9. Long term application of plant growth-promoting bacterium improved grain weight and reduced arsenic accumulation in rice grain: A comparison of 10 bacteria. Sun Y; Wang X; Liu Y; Duan K; Xia Y; Cai Q; Lou L Chemosphere; 2022 Sep; 303(Pt 1):135016. PubMed ID: 35598785 [TBL] [Abstract][Full Text] [Related]
10. Effects of combined soil amendments on Cd accumulation, translocation and food safety in rice: a field study in southern China. Shi L; Guo Z; Liu S; Xiao X; Peng C; Feng W; Ran H; Zeng P Environ Geochem Health; 2022 Aug; 44(8):2451-2463. PubMed ID: 34282515 [TBL] [Abstract][Full Text] [Related]
11. Zinc Fertilizers Modified the Formation and Properties of Iron Plaque and Arsenic Accumulation in Rice ( Wang X; Jiang J; Dou F; Li X; Sun W; Ma X Environ Sci Technol; 2022 Jun; 56(12):8209-8220. PubMed ID: 35623092 [TBL] [Abstract][Full Text] [Related]
12. Soil amendments with ZnSO Huang H; Tang ZX; Qi HY; Ren XT; Zhao FJ; Wang P Environ Pollut; 2022 Feb; 294():118650. PubMed ID: 34883148 [TBL] [Abstract][Full Text] [Related]
13. Differential impacts of copper oxide nanoparticles and Copper(II) ions on the uptake and accumulation of arsenic in rice (Oryza sativa). Wang X; Sun W; Ma X Environ Pollut; 2019 Sep; 252(Pt B):967-973. PubMed ID: 31252135 [TBL] [Abstract][Full Text] [Related]
14. Environmental behavior, potential phytotoxicity, and accumulation of copper oxide nanoparticles and arsenic in rice plants. Liu J; Dhungana B; Cobb GP Environ Toxicol Chem; 2018 Jan; 37(1):11-20. PubMed ID: 28796373 [TBL] [Abstract][Full Text] [Related]
15. Effects of zinc oxide nanoparticles on arsenic stress in rice (Oryza sativa L.): germination, early growth, and arsenic uptake. Wu F; Fang Q; Yan S; Pan L; Tang X; Ye W Environ Sci Pollut Res Int; 2020 Jul; 27(21):26974-26981. PubMed ID: 32385821 [TBL] [Abstract][Full Text] [Related]
16. Silicon-rich amendments in rice paddies: Effects on arsenic uptake and biogeochemistry. Limmer MA; Mann J; Amaral DC; Vargas R; Seyfferth AL Sci Total Environ; 2018 May; 624():1360-1368. PubMed ID: 29929248 [TBL] [Abstract][Full Text] [Related]
17. CuO nanoparticles in irrigation wastewater have no detrimental effect on rice growth but may pose human health risks. Phung LD; Kumar A; Watanabe T Sci Total Environ; 2022 Nov; 847():157602. PubMed ID: 35896133 [TBL] [Abstract][Full Text] [Related]
18. Cadmium (Cd) and zinc (Zn) accumulation by Thai rice varieties and health risk assessment in a Cd-Zn co-contaminated paddy field: Effect of soil amendments. Saengwilai P; Meeinkuirt W Environ Geochem Health; 2021 Sep; 43(9):3659-3674. PubMed ID: 33630197 [TBL] [Abstract][Full Text] [Related]
19. How Rice (Oryza sativa L.) Responds to Elevated As under Different Si-Rich Soil Amendments. Teasley WA; Limmer MA; Seyfferth AL Environ Sci Technol; 2017 Sep; 51(18):10335-10343. PubMed ID: 28795805 [TBL] [Abstract][Full Text] [Related]
20. Combined use of biochar and zinc oxide nanoparticle foliar spray improved the plant growth and decreased the cadmium accumulation in rice (Oryza sativa L.) plant. Ali S; Rizwan M; Noureen S; Anwar S; Ali B; Naveed M; Abd Allah EF; Alqarawi AA; Ahmad P Environ Sci Pollut Res Int; 2019 Apr; 26(11):11288-11299. PubMed ID: 30793248 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]