BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38863552)

  • 1. Genetic study of
    Ghidoli M; Geuna F; De Benedetti S; Frazzini S; Landoni M; Cassani E; Scarafoni A; Rossi L; Pilu SR
    Front Plant Sci; 2024; 15():1385332. PubMed ID: 38863552
    [No Abstract]   [Full Text] [Related]  

  • 2. Genetic analysis of freezing tolerance in camelina [Camelina sativa (L.) Crantz] by diallel cross of winter and spring biotypes.
    Soorni J; Kazemitabar SK; Kahrizi D; Dehestani A; Bagheri N
    Planta; 2021 Jan; 253(1):9. PubMed ID: 33389162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic mapping of agronomic traits in false flax (Camelina sativa subsp. sativa).
    Gehringer A; Friedt W; Lühs W; Snowdon RJ
    Genome; 2006 Dec; 49(12):1555-63. PubMed ID: 17426770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping quantitative trait loci for seed traits in Camelina sativa.
    King K; Li H; Kang J; Lu C
    Theor Appl Genet; 2019 Sep; 132(9):2567-2577. PubMed ID: 31177293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic dissection of natural variation in oilseed traits of camelina by whole-genome resequencing and QTL mapping.
    Li H; Hu X; Lovell JT; Grabowski PP; Mamidi S; Chen C; Amirebrahimi M; Kahanda I; Mumey B; Barry K; Kudrna D; Schmutz J; Lachowiec J; Lu C
    Plant Genome; 2021 Jul; 14(2):e20110. PubMed ID: 34106529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbohydrate metabolism enzymes and phenotypic characterization of diverse lines of the climate-resilient food, feed, and bioenergy crop
    Stasnik P; Vollmann J; Großkinsky DK; Jonak C
    Food Energy Secur; 2023 May; 12(3):e459. PubMed ID: 38440098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Realizing the Potential of
    Neupane D; Lohaus RH; Solomon JKQ; Cushman JC
    Plants (Basel); 2022 Mar; 11(6):. PubMed ID: 35336654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic Improvement of
    Ghidoli M; Ponzoni E; Araniti F; Miglio D; Pilu R
    Plants (Basel); 2023 Jan; 12(3):. PubMed ID: 36771654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytomolecular analysis of mutants, breeding lines, and varieties of camelina (Camelina sativa L. Crantz).
    Kwiatek MT; Drozdowska Z; Kurasiak-Popowska D; Noweiska A; Nawracała J
    J Appl Genet; 2021 May; 62(2):199-205. PubMed ID: 33409934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions between genetics and environment shape Camelina seed oil composition.
    Brock JR; Scott T; Lee AY; Mosyakin SL; Olsen KM
    BMC Plant Biol; 2020 Sep; 20(1):423. PubMed ID: 32928104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic Diversity and Population Structure of a
    Luo Z; Brock J; Dyer JM; Kutchan T; Schachtman D; Augustin M; Ge Y; Fahlgren N; Abdel-Haleem H
    Front Plant Sci; 2019; 10():184. PubMed ID: 30842785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of transgenic plants of a potential oilseed crop Camelina sativa by Agrobacterium-mediated transformation.
    Lu C; Kang J
    Plant Cell Rep; 2008 Feb; 27(2):273-8. PubMed ID: 17899095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overcoming genetic paucity of
    Blume RY; Kalendar R; Guo L; Cahoon EB; Blume YB
    Front Plant Sci; 2023; 14():1259431. PubMed ID: 37818316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation and analysis of expressed sequence tags (ESTs) of Camelina sativa to mine drought stress-responsive genes.
    Kanth BK; Kumari S; Choi SH; Ha HJ; Lee GJ
    Biochem Biophys Res Commun; 2015 Nov; 467(1):83-93. PubMed ID: 26410535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential physio-biochemical and yield responses of Camelina sativa L. under varying irrigation water regimes in semi-arid climatic conditions.
    Ahmed Z; Liu J; Waraich EA; Yan Y; Qi Z; Gui D; Zeng F; Tariq A; Shareef M; Iqbal H; Murtaza G; Zhang Z
    PLoS One; 2020; 15(12):e0242441. PubMed ID: 33264314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Camelina sativa, an oilseed at the nexus between model system and commercial crop.
    Malik MR; Tang J; Sharma N; Burkitt C; Ji Y; Mykytyshyn M; Bohmert-Tatarev K; Peoples O; Snell KD
    Plant Cell Rep; 2018 Oct; 37(10):1367-1381. PubMed ID: 29881973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fatty Acid Composition of
    Razmaitė V; Pileckas V; Bliznikas S; Šiukščius A
    Foods; 2021 Aug; 10(8):. PubMed ID: 34441681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptome profiling of Camelina sativa to identify genes involved in triacylglycerol biosynthesis and accumulation in the developing seeds.
    Abdullah HM; Akbari P; Paulose B; Schnell D; Qi W; Park Y; Pareek A; Dhankher OP
    Biotechnol Biofuels; 2016; 9():136. PubMed ID: 27382413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the progeny produced by interspecific hybridization between Camelina sativa and C. microcarpa.
    Tepfer M; Hurel A; Tellier F; Jenczewski E
    Ann Bot; 2020 May; 125(6):993-1002. PubMed ID: 32055837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Camelina as a sustainable oilseed crop: contributions of plant breeding and genetic engineering.
    Vollmann J; Eynck C
    Biotechnol J; 2015 Apr; 10(4):525-35. PubMed ID: 25706640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.