These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38863684)

  • 1. Promoter Effect of Pt on Zr Catalysts to Increase the Conversion of Furfural to γ-Valerolactone Using Batch and Continuous Flow Reactors: Influence of the Way of the Incorporation of the Pt Sites.
    García A; Saotta A; Miguel PJ; Sánchez-Tovar R; Fornasari G; Allegri A; Torres-Olea B; Cecilia JA; Albonetti S; Dimitratos N; Solsona B
    Energy Fuels; 2024 Jun; 38(11):9849-9861. PubMed ID: 38863684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cascade Upgrading of Biomass-Derived Furfural to γ-Valerolactone Over Zr/Hf-Based Catalysts.
    Sun W; Li H; Wang X; Liu A
    Front Chem; 2022; 10():863674. PubMed ID: 35321478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Valeric Biofuel Production from γ-Valerolactone over Bifunctional Catalysts with Moderate Noble-Metal Loading.
    Martínez Figueredo KG; Virgilio EM; Segobia DJ; Bertero NM
    Chempluschem; 2021 Jul; 86(9):1342-1346. PubMed ID: 34405959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microwave-Assisted One Pot Cascade Conversion of Furfural to γ-Valerolactone over Sc(OTf)
    Li F; Yang R; Tian Z; Du Z; Dai J; Wang X; Li N; Zhang J
    Chemistry; 2023 Sep; 29(52):e202300950. PubMed ID: 37392150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Conversion of Biomass-Derived Levulinic Acid to γ-Valerolactone over Polyoxometalate@Zr-Based Metal-Organic Frameworks: The Synergistic Effect of Bro̷nsted and Lewis Acidic Sites.
    Li J; Zhao S; Li Z; Liu D; Chi Y; Hu C
    Inorg Chem; 2021 Jun; 60(11):7785-7793. PubMed ID: 33755456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable and selective hydrogenation of furfural to furfuryl alcohol and cyclopentanone over Pt supported on biomass-derived porous heteroatom doped carbon.
    Liu X; Zhang B; Fei B; Chen X; Zhang J; Mu X
    Faraday Discuss; 2017 Sep; 202():79-98. PubMed ID: 28650491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water-born zirconium-based metal organic frameworks as green and effective catalysts for catalytic transfer hydrogenation of levulinic acid to γ-valerolactone: Critical roles of modulators.
    Yun WC; Yang MT; Lin KA
    J Colloid Interface Sci; 2019 May; 543():52-63. PubMed ID: 30779993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-step upgrading of bio-based furfural to γ-valerolactone
    Li M; Liu Y; Lin X; Tan J; Yang S; Li H
    RSC Adv; 2021 Oct; 11(56):35415-35424. PubMed ID: 35493184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel and highly efficient Zr-containing catalyst supported by biomass-derived sodium carboxymethyl cellulose for hydrogenation of furfural.
    Hao J; Zhang Y; Zhang T; Zhou H; Liu Q; Zhi K; Li N; He R
    Front Chem; 2022; 10():966270. PubMed ID: 35936079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanostructured Nickel/Silica Catalysts for Continuous Flow Conversion of Levulinic Acid to γ-Valerolactone.
    Mallesham B; Sudarsanam P; Venkata Shiva Reddy B; Govinda Rao B; Reddy BM
    ACS Omega; 2018 Dec; 3(12):16839-16849. PubMed ID: 31458310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Falling Leaves Return to Their Roots: A Review on the Preparation of γ-Valerolactone from Lignocellulose and Its Application in the Conversion of Lignocellulose.
    Xu R; Liu K; Du H; Liu H; Cao X; Zhao X; Qu G; Li X; Li B; Si C
    ChemSusChem; 2020 Dec; 13(24):6461-6476. PubMed ID: 32961026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-Temperature Catalytic Transfer Hydrogenation of Biomass-Derived Furfural over Irreversibly Adsorbed and Highly Dispersed Zr(IV) Species.
    Cen S; Li L; Li Y; Wan C; Linghu W; Wang L
    Inorg Chem; 2024 Jul; 63(29):13775-13784. PubMed ID: 38988096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noble Metal-Free Hierarchical ZrY Zeolite Efficient for Hydrogenation of Biomass-Derived Levulinic Acid.
    Hu D; Xu H; Wu Z; Zhang M; Zhao Z; Wang Y; Yan K
    Front Chem; 2021; 9():725175. PubMed ID: 34712649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MoO
    Wang L; Yang Y; Yin P; Ren Z; Liu W; Tian Z; Zhang Y; Xu E; Yin J; Wei M
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):31799-31807. PubMed ID: 34197068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porous Ti/Zr Microspheres for Efficient Transfer Hydrogenation of Biobased Ethyl Levulinate to γ-Valerolactone.
    Yang T; Li H; He J; Liu Y; Zhao W; Wang Z; Ji X; Yang S
    ACS Omega; 2017 Mar; 2(3):1047-1054. PubMed ID: 31457487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Titania-Supported Catalysts for Levulinic Acid Hydrogenation: Influence of Support and its Impact on γ-Valerolactone Yield.
    Ruppert AM; Grams J; Jędrzejczyk M; Matras-Michalska J; Keller N; Ostojska K; Sautet P
    ChemSusChem; 2015 May; 8(9):1538-47. PubMed ID: 25641864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly efficient selective hydrogenation of levulinic acid to γ-valerolactone over Cu-Re/TiO
    Liu Y; Liu K; Zhang M; Zhang K; Ma J; Xiao S; Wei Z; Deng S
    RSC Adv; 2021 Dec; 12(1):602-610. PubMed ID: 35424528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances on bifunctional catalysts for one-pot conversion of furfural to γ-valerolactone.
    Wang J; Xiang Z; Huang Z; Xu Q; Yin D
    Front Chem; 2022; 10():959572. PubMed ID: 36017159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water-Tolerant DUT-Series Metal-Organic Frameworks: A Theoretical-Experimental Study for the Chemical Fixation of CO
    Kurisingal JF; Rachuri Y; Palakkal AS; Pillai RS; Gu Y; Choe Y; Park DW
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41458-41471. PubMed ID: 31613085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recyclable Zr/Hf-Containing Acid-Base Bifunctional Catalysts for Hydrogen Transfer Upgrading of Biofuranics: A Review.
    Liu Y; Liu X; Li M; Meng Y; Li J; Zhang Z; Zhang H
    Front Chem; 2021; 9():812331. PubMed ID: 34993179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.