These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 38864002)

  • 1. Strongly Inhibited Spontaneous Emission of PbS Quantum Dots Covalently Bound to 3D Silicon Photonic Band Gap Crystals.
    Schulz AS; Kozoň M; Vancso GJ; Huskens J; Vos WL
    J Phys Chem C Nanomater Interfaces; 2024 Jun; 128(22):9142-9153. PubMed ID: 38864002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted Positioning of Quantum Dots Inside 3D Silicon Photonic Crystals Revealed by Synchrotron X-ray Fluorescence Tomography.
    Schulz AS; Harteveld CAM; Vancso GJ; Huskens J; Cloetens P; Vos WL
    ACS Nano; 2022 Mar; 16(3):3674-3683. PubMed ID: 35187934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibited spontaneous emission of quantum dots observed in a 3D photonic band gap.
    Leistikow MD; Mosk AP; Yeganegi E; Huisman SR; Lagendijk A; Vos WL
    Phys Rev Lett; 2011 Nov; 107(19):193903. PubMed ID: 22181609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of spontaneous emission of semiconductor quantum dots inside one-dimensional porous silicon photonic crystals.
    Dovzhenko D; Martynov I; Samokhvalov P; Osipov E; Lednev M; Chistyakov A; Karaulov A; Nabiev I
    Opt Express; 2020 Jul; 28(15):22705-22717. PubMed ID: 32752526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental probe of a complete 3D photonic band gap.
    Adhikary M; Uppu R; Harteveld CAM; Grishina DA; Vos WL
    Opt Express; 2020 Feb; 28(3):2683-2698. PubMed ID: 32121951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals.
    Lodahl P; Floris Van Driel A; Nikolaev IS; Irman A; Overgaag K; Vanmaekelbergh D; Vos WL
    Nature; 2004 Aug; 430(7000):654-7. PubMed ID: 15295594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced trion emission from colloidal quantum dots with photonic crystals by two-photon excitation.
    Xu X
    Sci Rep; 2013 Nov; 3():3228. PubMed ID: 24231669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous emission from photonic crystals: full vectorial calculations.
    Li ZY; Lin LL; Zhang ZQ
    Phys Rev Lett; 2000 May; 84(19):4341-4. PubMed ID: 10990681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface recombination and charged exciton in nanocrystal quantum dots on photonic crystals under two-photon excitation.
    Xu X
    Sci Rep; 2014 Jun; 4():5039. PubMed ID: 24902925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermally stimulated exciton emission in Si nanocrystals.
    de Jong EM; Rutjes H; Valenta J; Trinh MT; Poddubny AN; Yassievich IN; Capretti A; Gregorkiewicz T
    Light Sci Appl; 2018; 7():17133. PubMed ID: 30839625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of spontaneous emission from CdSe/ZnS quantum dots through silicon nitride photonic crystal cavity based on miniaturized bound states in the continuum.
    Qiu G; Wei D; Liu Z; Liu J
    Nanoscale; 2023 Feb; 15(8):3757-3763. PubMed ID: 36787155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoassisted tuning of silicon nanocrystal photoluminescence.
    Choi J; Wang NS; Reipa V
    Langmuir; 2007 Mar; 23(6):3388-94. PubMed ID: 17295527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional photonic crystals for engineering atom-light interactions.
    Yu SP; Muniz JA; Hung CL; Kimble HJ
    Proc Natl Acad Sci U S A; 2019 Jun; 116(26):12743-12751. PubMed ID: 31189598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PbS Nanocrystal Emission Is Governed by Multiple Emissive States.
    Caram JR; Bertram SN; Utzat H; Hess WR; Carr JA; Bischof TS; Beyler AP; Wilson MW; Bawendi MG
    Nano Lett; 2016 Oct; 16(10):6070-6077. PubMed ID: 27627129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging single quantum dots in three-dimensional photonic crystals.
    Barth M; Schuster R; Gruber A; Cichos F
    Phys Rev Lett; 2006 Jun; 96(24):243902. PubMed ID: 16907242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide.
    Lund-Hansen T; Stobbe S; Julsgaard B; Thyrrestrup H; Sünner T; Kamp M; Forchel A; Lodahl P
    Phys Rev Lett; 2008 Sep; 101(11):113903. PubMed ID: 18851282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. InGaAs quantum dots grown by molecular beam epitaxy for light emission on Si substrates.
    Bru-Chevallier C; El Akra A; Pelloux-Gervais D; Dumont H; Canut B; Chauvin N; Regreny P; Gendry M; Patriarche G; Jancu JM; Even J; Noe P; Calvo V; Salem B
    J Nanosci Nanotechnol; 2011 Oct; 11(10):9153-9. PubMed ID: 22400316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct Synthesis and Characterization of Hydrophilic Cu-Deficient Copper Indium Sulfide Quantum Dots.
    Richardson A; Alster J; Khoroshyy P; Psencik J; Valenta J; Tuma R; Critchley K
    ACS Omega; 2024 Apr; 9(15):17114-17124. PubMed ID: 38645370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photocurrent induced by nonradiative energy transfer from nanocrystal quantum dots to adjacent silicon nanowire conducting channels: toward a new solar cell paradigm.
    Lu S; Lingley Z; Asano T; Harris D; Barwicz T; Guha S; Madhukar A
    Nano Lett; 2009 Dec; 9(12):4548-52. PubMed ID: 19856942
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.