BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38864112)

  • 1. Degassing 4-
    Liang X; Ming Y; Lee SH; Fu G; Lee SU; Kim TI; Zhang H; Park NG
    ACS Appl Mater Interfaces; 2024 Jun; 16(25):32147-32159. PubMed ID: 38864112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphology Control of Doped Spiro-MeOTAD Films for Air Stable Perovskite Solar Cells.
    Wang S; Wei Q; Wang K; Zhang Z; Zhao D; Liang C; Liu T; Guo J; Su C; Li Y; Xing G
    Small; 2020 May; 16(18):e1907513. PubMed ID: 32307895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Capturing Mobile Lithium Ions in a Molecular Hole Transporter Enhances the Thermal Stability of Perovskite Solar Cells.
    Kim SG; Le TH; de Monfreid T; Goubard F; Bui TT; Park NG
    Adv Mater; 2021 Mar; 33(12):e2007431. PubMed ID: 33604974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the Morphology Stability of Spiro-OMeTAD Films for Enhanced Thermal Stability of Perovskite Solar Cells.
    Song W; Rakocevic L; Thiruvallur Eachambadi R; Qiu W; Bastos JP; Gehlhaar R; Kuang Y; Hadipour A; Aernouts T; Poortmans J
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):44294-44301. PubMed ID: 34498844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Selective Contacts on the Thermal Stability of Perovskite Solar Cells.
    Zhao X; Kim HS; Seo JY; Park NG
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7148-7153. PubMed ID: 28186718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Challenges for Thermally Stable Spiro-MeOTAD toward the Market Entry of Highly Efficient Perovskite Solar Cells.
    Jeong SY; Kim HS; Park NG
    ACS Appl Mater Interfaces; 2022 Aug; 14(30):34220-34227. PubMed ID: 35076216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic Ionic Liquid in Hole Transport Layers for Highly Stable and Efficient Perovskite Solar Cells.
    Cao F; Zhu Z; Zhang C; Chen P; Wang S; Tong A; He R; Wang Y; Sun W; Li Y; Wu J
    Small; 2023 Jul; 19(27):e2207784. PubMed ID: 36974610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Keggin-Type PMo
    Dong G; Xia D; Yang Y; Shenga L; Ye T; Fan R
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2378-2386. PubMed ID: 28058832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved Performance and Reproducibility of Perovskite Solar Cells by Well-Soluble Tris(pentafluorophenyl)borane as a p-Type Dopant.
    Ye T; Wang J; Chen W; Yang Y; He D
    ACS Appl Mater Interfaces; 2017 May; 9(21):17923-17931. PubMed ID: 28485135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient Planar Perovskite Solar Cells with Carbon Quantum Dot-Modified spiro-MeOTAD as a Composite Hole Transport Layer.
    Liu J; Dong Q; Wang M; Ma H; Pei M; Bian J; Shi Y
    ACS Appl Mater Interfaces; 2021 Dec; 13(47):56265-56272. PubMed ID: 34792324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unveiling the Role of tBP-LiTFSI Complexes in Perovskite Solar Cells.
    Wang S; Huang Z; Wang X; Li Y; Günther M; Valenzuela S; Parikh P; Cabreros A; Xiong W; Meng YS
    J Am Chem Soc; 2018 Dec; 140(48):16720-16730. PubMed ID: 30400739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overcoming Perovskite Corrosion and De-Doping Through Chemical Binding of Halogen Bonds Toward Efficient and Stable Perovskite Solar Cells.
    Ren G; Han W; Zhang Q; Li Z; Deng Y; Liu C; Guo W
    Nanomicro Lett; 2022 Aug; 14(1):175. PubMed ID: 35999406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kesterite Cu2ZnSnS4 as a Low-Cost Inorganic Hole-Transporting Material for High-Efficiency Perovskite Solar Cells.
    Wu Q; Xue C; Li Y; Zhou P; Liu W; Zhu J; Dai S; Zhu C; Yang S
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28466-73. PubMed ID: 26646015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perovskite Solar Cells Employing a PbSO
    Zheng J; Li F; Chen C; Du Q; Jin M; Li H; Ji M; Shen Z
    ACS Appl Mater Interfaces; 2022 Jan; 14(2):2989-2999. PubMed ID: 34981934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solvent Engineering of a Dopant-Free Spiro-OMeTAD Hole-Transport Layer for Centimeter-Scale Perovskite Solar Cells with High Efficiency and Thermal Stability.
    Hu M; Wu X; Tan WL; Tan B; Scully AD; Ding L; Zhou C; Xiong Y; Huang F; Simonov AN; Bach U; Cheng YB; Wang S; Lu J
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8260-8270. PubMed ID: 31992043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Branched Fluorenylidene Derivatives with Low Ionization Potentials as Hole-Transporting Materials for Perovskite Solar Cells.
    Jegorovė A; Xia J; Steponaitis M; Daskeviciene M; Jankauskas V; Gruodis A; Kamarauskas E; Malinauskas T; Rakstys K; Alamry KA; Getautis V; Nazeeruddin MK
    Chem Mater; 2023 Aug; 35(15):5914-5923. PubMed ID: 37576588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of heteroatom substitution in spiro-bifluorene hole transport materials.
    Hu Z; Fu W; Yan L; Miao J; Yu H; He Y; Goto O; Meng H; Chen H; Huang W
    Chem Sci; 2016 Aug; 7(8):5007-5012. PubMed ID: 30155151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal Stability of CuSCN Hole Conductor-Based Perovskite Solar Cells.
    Jung M; Kim YC; Jeon NJ; Yang WS; Seo J; Noh JH; Il Seok S
    ChemSusChem; 2016 Sep; 9(18):2592-2596. PubMed ID: 27611720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cascade Reaction in Organic Hole Transport Layer Enables Efficient Perovskite Solar Cells.
    Lan Z; Huang H; Du S; Lu Y; Sun C; Yang Y; Zhang Q; Suo Y; Qu S; Wang M; Wang X; Yan L; Cui P; Zhao Z; Li M
    Angew Chem Int Ed Engl; 2024 May; 63(21):e202402840. PubMed ID: 38509835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasma-Exposure-Induced Mobility Enhancement of LiTFSI-Doped Spiro-OMeTAD Hole Transport Layer in Perovskite Solar Cells and Its Impact on Device Performance.
    Qu H; Zhao G; Wang Y; Liang L; Zhang L; Liu W; Zhang C; Niu C; Fang Y; Shi J; Cheng J; Wang D
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31561493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.